
BRL
1229
c.3A

lA

\\m

REPORT NO. 1229
NOVEMBER 1963

H1'. rill

V

For Reference

Not to be taken from this room

BRLESC FORTRAN

Lloyd W. Campbell
Glenn Beck

SCJüittifco m
J-

AÜhUMxjj, Vi .iMr Li nou&b, u&

RDT & E Project No. 1M310501A003

BALLISTIC RESEARCH LABORATORIES
•»»»»WWW-*"»— • 4-yj^- ,- " ~" • .« .-««..—•• ••• • ••.• j •—? •*••(».7-* *••*' —'. ^^^—' TW \ •—."•.-• ,;.*"••.' - v ;. .. . *,i -' •—•—• •—i—• •• , - .,-; r — . —•:—• »T"^—~ •» •—r^ • •. * •—»•• --•. • .—TTT • • * '

,.I-aJ»VJ--t^g-V.>.^-w,J,>..'>^-.-/;«-,Si>-VV,W-s H,^ff,:.'AV....-^.«...^-,v-. ;-- •• .. .- .,-.V-^ ,•.„•• •••«••. -- .•*•.,>.. :•-,•..: ••.,.•

ABERDEEN PROVING GROUND, MARYLAND

ism l MJ *J<"«" ~~ \ ""

.IHN 8 t* *

VIA) AVAJ.lAtJl.bJ.TI WUTIUü;

Qualified requesters may obtain copies of this report from DDC.

The findings in this report are not to he construed
as an official Department of the Army position.

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1229

ivy, tv i-im 1 11-IIA i^y^

Lloyd W. Campbell
Glenn Beck

Computing Laboratory

TEfrcn-V.T-TT'VÄl

RDT & E Project No. 1M010501A003

ABERDEEN PROVING GROUND, MARYLAND

RESE A\B Cn LABORATORIES

REPORT NO. 1229

jjruociuu r UX\J.X\HJ.H

ABSTRACT

LWCampbell/GBeck/ilm
Aberdeen Proving Ground, Md.
November 1963

FORTRAN is a popular programming language that has been implemented on many

computers. It is now available on Ballistic Research Laboratories* BRLESC com-

puter. This report describes the FORTRAN language in general and includes spe-

cific details about its implementation on BRLESC.

TABLE OF CONTENTS

.rage

ABSTRACT 3
T T1\TnTD/~\T\TT/-<mT/'YI\T <-? •*•• xmnuuuoiiUH, ...•........•.••....••...... [

II. CHARACTER SET 7

III. SYMBOLIC NAMES 8

IV. ARITHMETIC EXPRESSIONS 9

V. ARITHMETIC FORMULAS 11

VI. SPECIFICATION STATEMENTS 11

DIMENSION 11

EQUIVALENCE 12

COMMON 12

FREQUENCY 12

VII. CONTROL STATEMENTS 13

GOTO 13

GOTO (Computed) 13

A.QRTP.W 13

GOTO (Assigned) 13

IF 13

DO ih

CONTINUE Ih-

STOP 1^

PAUSE 15

CALL 15

IF (Sense Switch) 15

SENSE LIGHT 16

IF (Sense Light) 16

IF ACCUMULATOR OVERFLOW ^u

IF QUOTIENT OVERFLOW l6

IF DIVIDE CHECK l6

III« THE FORMAT STATEMENT l6

EC/ DESCRIPTION OF INPUT-OUTPUT LISTS 21

X. INPUT-OUTPUT STATEMENTS 22

READ 23

PUNCH 23

PRINT 23

READ INPUT TAPE , 2*+

TABLE OF CONTENTS (Cont'd)

Page

T.mTnTTTi y"Vr n 111 n im m A T"»i.i .-. i
wnjLXXi uuxxrux XäTE 'dh

READ TAPE 24

WRITE TAPE ?s ------- -.-....- —x

JM^JJ r xxir, ^5

BACKSPACE 25

REWIND ?R ----------------- —^
•DT7<AT\ TYClTTIl* r-, i-
XVCiHJU X/iAUl"! cTp

WRITE DRUM 25

XI. SUBPROGRAM STATEMENTS 28

CTTTOPHTIMi I Mb! nQ ^-"^ J-u- *v/w j- A.A1J--1 • • ••••••*•»••••••*••••••••»«* rT^

FUNCTION 29

RETURN 29

ENT) , , , 2d

XII. PRE-DEFINED FiINCTIONS AND ARITHMETIC STATEMENT FUNCTIONS 30

XIII. PRE-DEFINED SUBROUTINES 31

XIV, FORTRAN PROGRAM CARDS 32

AV . nrujjLDO uuiNrnuij \SHSUJO HIVIJ uxoxxuimnx .rnxirxxiinj 3M-

XVI. BRLESC COMPILER ERROR PRINTS 37

XVII. BRLESC RUN ERROR PRINTS 39

VUTTT rmt^TD AmT/-YlVT m? UIUL' DDT l^OP "GinDfTTOATM nAKADTTTTD Jin
AVlli« V-r-Eii\n.J.xvyi^ ur J.J.JJLJ XJIUüUUV/ J.' WJA-HU-UH UWU j-ixuux •••••••••«••••• TV

XIX. SPEED OF BRLESC FORTRAN COMPILING 41

XX. RUNNING FORTRAN PROGRAMS ON BRLESC 41

YYT MATriU r> I U'U'li'WTTMr'TPQ TJT?TH») WWKI "KTYRflQT' flMTl "PrYRfR AW L.9 iUli. . I'inU Vll i / i i- i- i iimi-iu l^JJUTUlill x Ul IJ-l-^ -> -L. JT-tlJ-/ J. i-rj.l-l.J.U-U.1 ' —

XXII. CHECKLIST FOR CONVERTING OTHER COMPUTER FORTRAN PROGRAMS TO BRLESC
FORTRAN 43

XXIII. SUMMARY OF FORTRAN STATEMENTS 45

ACKNOWLEDGEMENTS 47
T"> i.ii.11.ii i-rniT/Ynrt /I H
rLHirHLTUMNUJliD. -r^

APPENDIX A: LIST OF PRE-DEFINED FUNCTIONS FOR 709/7090 AND BRLESC
FORTRAN 49

APPENDIX B: THREE EXAMPLES OF FORTRAN PROGRAMS 51

I. INTRODUCTION

FORTRAN is a programming language that is widely used on a variety of computers

and can now be used on Ballistic Research Laboratories' BRLESC computer. FORTRAN

was designed primarily for programming of scientific problems and the evaluation

of arithmetic formulas. It is basically similar to the FORAST programming lan-

guage that is currently used on BRLESC and ORDVAC but many of the details are

different.

This manual is intended primarily for the programmers that are familiar with

FORAST and BRLESC; however, it includes a general description of the FORTRAN lan-

guage and should prove helpful to anyone who is interested in writing or reading

FORTRAN programs. Additional details and general information can be obtained from

other FORTRAN manuals and publications. The FORTRAN II manuals for the 709/7090

are suggested for those interested in using BRLESC FORTRAN since BRLESC FORTRAN is

more compatible with the 709/7090 version of FORTRAN than with some versions that

are used on other computers. Some readers may be surprised to learn that FORTRAN

is not the same for all computers. Although the general rules are usually the

same, differences in details do exist and some of the detail differences are quite

subtle. It is relatively easy to write FORTRAN programs which when executed on

different computers will yield different results. These differences may be due to

differences in compilers or differences in the structures of the computers. How-

ever, most FORTRAN programs require only minor modifications to allow them to run

on any given computer. The modifications usually require much less effort and

time than would be required to re-program the problem in another programming lan-

guage.

II. THE CHARACTER SET

FORTRAN allows the use of the twenty-six capital letters of the alphabet, the

decimal digits 0 to 9 and the special symbols +-()•*/,=. (The symbol $

is allowed only as hollerith text in a FORMAT statement.)

The card code for these characters is the same as normally used for FORAST

and BRLESC except for the following:

FORTRAN BRL

($ Standard FORTRAN left parenthesis uses 0-2+-8 punches that

normally represents $ at BRL. Since FORTRAN does not allow

the k-8 code (BRL left parenthesis) in programs, BRLESC

FORTRAN allows either code to mean left parenthesis.

+ - Standard FORTRAN uses card codes for the signs that are

+ just the opposite of BRL usage (+ is x, - is y at BRL).

A "CHANGE + AND -" control card may be inserted in a

FORTRAN program to cause BRLESC to reverse these symbols.

They are initially set for BRL usage.

The 709/7090 FORTRAN and BRLESC FORTRAN also allow a k-8

card code to be a minus sign on decimal input. BRL signs

are used for decimal input unless the SETMSI subroutine is

used to change signs. A "CHANGE + AND -" control card

does not change signs used for input data.

$ ' This card code X-3-8 is allowed only in hollerith text

(H fields) in FORMAT statements.

III. SYMBOLIC NAMES AND CONSTANTS

A. General Names

In FORTRAN, all symbolic names (other than statement names) must begin with a

letter and, for variables, the first letter determines the type of number it rep-

resents. Names of variables that begin with I, J, K, L, M or N represent integer

numbers whereas names beginning with other letters represent floating point numbers

(or Boolean variables). The length of symbolic names is restricted to six char-

acters except subroutine names may have a terminal F as a seventh character.

B. Statement Numbers

Locations of statements (cols. 1-5 of FORTRAN statement cards) must be all

decimal digits and thus look like integer numbers but are really symbolic locations

of statements. (Statement numbers must be less than 32768 for 709/7090 but not

BRLESC.) They do not affect the sequence of execution of the statements.

C. Constants

1. Integer constants are written without a decimal point. An integer con-

stant on BRLESC may consist of 1 to 19 decimal degits (less than 2 in absolute

value) except for those integers involved in division operations which must be
34

less than 2 in absolute value. Some computers restrict integer constants to as

few as four decimal digits. The values of integer variables are restricted to

the same maximum value as integer constants on BRLESC and most computers.

2. Floating point constants must be written with a decimal point. They may

consist of a decimal point with 1 to 19 decimal digits (on BRLESC) and may be

followed by an E and a decimal exponent. The BRLESC range of floating point

8

constants (variables) is between 10 and 10 approximately in absolute value

with zero also allowed. Most computers have a more restricted range of numbers.

Examples: 1. , 4.21 , .2 , 51.6 E2 , .1E-3

3. Boolean constants are written as twelve octal digits. If less than twelve

digits are written, zeros are added by the computer to the left of the digits to

make a total of twelve.

D. Arrays

Blocks of storage are referred to as arrays in FORTRAN and are defined in

XS.I_J.-JUL-IXIPV'_I.\SXI uuu U'wmv.u <_i fc_» • p-'«^.^1 u^-J. ±^Oü C*-L ^ ^iiv^.L.iw' Ot:ut. -Lli. L»d-L ^11 Ull^ O^ O J.11 X,' WJAX-l-lf-LlV • C • fci •

A(3) or B(l,j), and one, two, or three dimensional arrays may be used. Any sub-

script may be variable and "indexing", as done in FORAST, is not allowed. Sub-

scription of variables is done bv substitution rather than addition and the lower

bound of all subscripts is one. Subscript arithmetic is allowed; BRLESC FORTRAN

allows any integer arithmetic expression that does not itself involve any sub-

scripted variables, however, the most general expression allowed in standard

FORTRAN is C * V+ C where C and C are integer constants and V is an integer

variable.

uiiuouijiicu ucuuco UIU.OU üuo ciiu. w±011 r uiucöö OIIC^ nave uiuec ux xebb una.± •

acters.

oyinmeoi J.U ai raj s eu e nuu ctX-Luweu. j.n i UIMüHH cuiu. uuere j.t> nu JJIUVJ.OJ.UII J.U±"

"interweaving" arrays.

There is no provision in FORTRAN for writing absolute addresses.

IV, ARITHMETIC EXPRESSIONS

The following symbols denote the following operations:

+ addition

subtraction

* multiplication

/ division

** exponentiation

The use of functions (subroutines with only one result) is also allowed by

writing the name of the function in front of parentheses that enclose the argu-

ments. (FORTRAN allows functions to have more than one argument and commas are

used to separate the arguments.) The arguments may be arithmetic expressions.

xne precedence of operations when not governed by the use of parentheses is

ium;tiuiib ^BUDrouxmesj

* and /

> C4J.±U_ —

where the operations higher or the list will be performed before those that are

lower on the list. For successive + and - operations or successive * and / oper-

ations, they will be performed from the left to the right. Parentheses may always

be used to cause the operations to be done in any desired sequence. Successive

exponentiations must always have parentheses to show the desired grouping.

The major difference between FORAST and FORTRAN arithmetic expressions is the

grouping of successive multiplications and divisions. FORAST groups them from the

right and FORTRAN groups them from the left. Thus in the expression (A * B/C * D),

D is in the denominator for FORAST and is part of the numerator for FORTRAN.

Implied multiplication should not be used in FORTRAN (although some versions

do allow it and BRLESC FORTRAN allows it after a right parenthesis).

Fixed Point Fractional Arithmetic Is Not Allowed in FORTRAN. All arithmetic

within an expression must be one mode ^integer or fi. pt.; except for integer

subscripts and integer powers of exponentiation in floating point expressions.

The first letter of the names and the use of the decimal point in numbers deter-

mines the mode rather than preceding the expression with a declaration of the

mode as is done in FORAST.

Parentheses must not be omitted at the ends of an expression. The number of

left parentheses must be the same as the number of right parentheses in each

expression.

Two operations must not appear adjacent to each other in formulas; e.g. / -

or * * - .

Any operation on integers which does not yield an exact integer result is

truncated except negative integer results of division on BRLESC FORTRAN will give

the fireatest integer that does not exceed the algebraic exact result. Thus -h.2

will give -5. This is probably different than results on the 7090 or other abso-

lute value machines.

For 709/7090 and BRLESC FORTRAN, boolean expressions are allowed and are

designated on cards with a B in column one. The symbols +, *, - denote the logi-

cal operations of or (inclusive), and, and complement respectively, BRLESC FORTRAN

10

performs these operations only on the rightmost 36 bits of a word so that it is

fnmra + i'Vilp i.H -f-.Vi -hVi<= ~*\f\ Vn'+ LTi-iyr) lonir+Vi nP -t-Vio 1C\Q llCSQO* TTVio "1 oo^-i >-.n. ^O "K-t + r, ,-,-P

a BRLESC word will be zeros after a logical operation.

Double Precision arithmetic expressions are allowed (a D in col. l) but are

done in BRLESC single precision which is as accurate as 709/7090 double precision.

f1y"\YY1'V-vl Ä-V Q VT -1 -(- V\TVI ö 4- -1 /-* mmv nnnnnvifi ri -M /^ v^^^+ -**-itrt*-«^-«-4-"l-*j- nl 1 n-r , *~.^i -J « T3TDT "CT 0/•t Tn**M~lll II 1 A ^T v^-uiipx^-rt. aixüiüiicox^ CApiccioiuilo CLJ.C IIUO yi CDCIIUJ.^ axxuwcu XII nn I iPn-ii . r UIMIUUl.

An I in column one will cause an error print.

\T

The general form of FORTRAN arithmetic formulas (arithmetic statements) is

v = ae

where v is a name of a variable (it may be subscripted) and ae is an arithmetic

expression. An example would be

Al,d + X) = A\<J)•d. - V/V-L' + ?')

The arithmetic expression is evaluated and the result is stored as the new

value of the variable whose name is on the left of the = symbol.

No arithmetic may be performed on the left of the = symbol except for subscript

arithmetic. Only one = symbol is allowed and hence only one variable will have its

value changed by an arithmetic formula.

The arithmetic expression may be just a name of a variable or constant, e.g.

X = A.

VI. SPECIFICATION STATEMENTS

This group of statements (DIMENSION, EQUIVALENCE, COMMON and FREQUENCY) pro-

VJ.U.CO xiij. ui IUCL uiuii u\-» one ^uiupx±ci cxnu. may ue u-ocu. uj unc pi wg,i cuiuiici o^/ v-uii ox \^-i_ one

storage assignment of some or all of the variables. These statements do not cause

any machine code to be generated for running the program, they only affect the way

•i •*• ic c^mT'iled

1. DIMENSION a(i), b(il,i2), c(i3,iU,i5), , where a,b,c are array

noYYiQ o at-ii^ -f-Vi-o -i*o QT^O -Tvrf-o rroy nnnof onf o

This statement is used to declare the names and maximum sizes of arrays.

XI1CT 111 n, A I 111U III OHL-'OV^J.Xk/L'O CL-i-e ^i.i\-_L.v^otJVj. in ptx J V..HUJ.H. uv- kj uiiu. unv^ Jr iiiuu »-i i-* v- u.^,\^ xiuui. xnwu^^j.

constants, not variables. The minimum subscript is always taken to be one. One,

two, or three dimensional arrays may be defined in any sequence.

1 1

2. EQUIVALENCE (a,b,c,),(d,e,f,), where a,b,c,d,e,f are names of

any type of variable.

This statement causes different names to be assigned to the same memory

space. (it performs the same function as SYN does in FORAST.) All the names

within a set of parentheses are made equivalent. Increments may be used if desired

by enclosing them in parentheses immediately after the name. (No increment is

one same as an increment of one.j

3. COMMON a.b.c.d.e where a,b,c,d;e are the names of variables of

any type.

This statement allows the programmer to specify that certain variables

and arrays are the same in more than one program or subprogram (subroutine or

function). The storage assigned to those iteris in the COMMON statement in one

subprogram is the same storage assigned to the items in the COMMON statements in

all of the other subprograms (and also the main program). Thus it also has an

equivalence effect between subprograms. All storage used in each subprogram is

different than the storage in any other subprogram except for the items that are

listed in COMMON statements.

Within each subprogram, all COMMON variables are assigned consecutively

in the sequence in which they appear. The starting point for all the subprograms

within each total program is the same. Proper space is left for arrays.

COMMON statements are used to avoid listing many arguments when using

a subprogram. By forcing subprograms to use the same storage as the main program

for some (and possibly all) of the variables, the need for specifying and moving

variables is removed.

If any COMMON variable also appears in an EQUIVALENCE statement, the

COMMON assigning has priority and is done first in BRLESC FQRTFAN. This is dif-

ferent than 709/7090 FORTRAN where EQUIVALENCE variables are assigned first and

will change the sequence of storage assigned to COMMON variables. BRLESC FORTRAN

handles the COMMON-EQUIVALENCE interaction as specified for FORTRAN IV and in fact

allows labeled (block) COMMON and array definitions in COMMON the same as FORTRAN IV.

k. FREQUENCY.

This statement is ignored by BRLESC FORTRAN. Its purpose in 709/7090

FORTRAN is to provide information that helps the compiler to optimize the program.

12

VII. CONTROL STATEMENTS

This group of statements provides for controlling the sequence in which

statements are executed in the running program. Unconditional transfer of control

(sometimes called branching or jumping) is provided for by several types of GOTO

statements and conditional transfer of control is provided by several types of IF

statements. A DO statement allows definition of a "loop" and a CALL statement

causes transfer of control to a subroutine with a return to the next statement.

There are two statements (STOP and PAUSE) that cause the program to stop running.

1. GOTO s where s is a statement number.

This statement causes the statement numbered s to be done next.

Example: GOTO 22

2. GOTO (si,s2,s3,...), i where si,s2,s3 are statement numbers and i is a

pted integer variable.

This is referred to as a "computed GOTO" and the statement done next

v>nvi e?i lVi or»Y»T -r-\+- o/3 n n+" dCTCHT* ~\TQ T1"! oVl ~\ P>

uepends on the value of i. If i = 1, si is done next: if i = 2. s2 is done next: A

etc.

Example: GOTO(^, 19^62),K

3. ASSIGN s TO i where s is a statement number and i is a nonsubscripted

integer variable.

This statement causes the address of the statement numbered s to be put

into the integer variable i and this type of statement is to be executed before

the "assigned GOTO" statement (as explained in the next paragraph) is executed.

Example: ASSIGN 6h to M

h, GOTO i, (si,, s2, s3,) where i is a nonsubscripted integer variable

and si, s2, s3, are statement numbers.

This statement transfers control to the statement that has the number

that was last assigned to i by means of an ASSIGN statement. The (si,s2,s3)

enumeration in this statement is not really necessary but should be used to list

the possible statement numbers that this "assigned GOTO" statement may transfer

*->r\v-i4- -y*J-\ 1 4-*•\

Examples: ASSIGN kk to N

GOTO N, (16,29,^,192)

5. IF (ae) si,s2,s3 where ae is an arithmetic expression and si,s2,s3 are

statement numbers.

13

x-nis statement causes control to be transferred to statement sl,s2, or

s3 depending on whether the value of the arithmetic expression ae is negative,

zero (exactlv). or positive respectively.
ÜTOrrmloc TT?fV^I T OO

IF(R * V - k.l*{V+V))l6,2kk,l6

6. DO s i = il, 12, 13 where s is a statement number, i is a nonsubscripted

integer variable and il,i2,i3 are integer constants or nonsubscripted integer

variables.

'This statement causes the statements following this DO statement up to

and including the statement numbered s, to be executed repeatedly with the integer

variable i initially assuming the value of il. The variable i is incremented by

13 at the end of the sequence of statements and the sequence is repeated if the

value of i does not exceed 12. The specification of i3 is optional. If i3 is

not specified, its value is taken as one (l).

A DO sequence of statements may itself contain a DO sequence provided

the entire inner DO sequence is contained in the outer one. Several DO*s may

terminate on the same statement

While most versions of FORTRAN have several other restrictions concerning

DO IQQTIS, BRLESC FORTRAN does not have any other restrictions on the construction

of the statements that are included in DO loops. BRLESC FORTRAN does always set

and use the actual integer variable specified for i in a DO statement and its final

value (ülus the increment for normal termination of the DO loon) is alwavs stored

Examples: DO 42 K = 1,L

DO 3 JT = MIN, 55, NSTEP

7. CONTINUE

This is a dummy statement that generates no object code except when it is

•f-Vio lflct cf of omonf T n et T)C\ 1 nn-n T+Q cfQ+cmcin+ mimT-ioY» "i Q Q 1 uoirc n eorl n-p i +• Vta a nno

It must be used as the last statement in a DO loop whenever the last statement would

have been an IF or GOTO type of statement that transfers control. Whenever a

CONTINUE statement is the last statement in a DO loo"n- its statement number is the

location of the mf

its maximum value.

u. ox\JC ur oi\ic w wiitM't; w ±a an uuoai cuiisi/ani. unao ±a iguureu,

This statement causes the running program to be terminated and should

only be used to indicate that the program has run to completion. This statement

 -nT->TTncn T^yNorno AT\T 4-~ ^«^4-^ 4-V.^ -i-o-r^ö ^n + TMi-t- Kn-P-for T'oi.n'nrl -hVio ci"hpt nrl Pfrrl nnt.mit.

"Ik

tape if it should be rewound, check for overflows and halt at NUO. On BRLESC,

the program may also be terminated by reading a card or tape line that has the

first ten characters of either "ENDbTAPEbb" or "bbbbbbPROB" where b represents a

blank.

Examples: STOP

STOP 77

9. PAUSE or PAUSE w where w is an octal constant.

This statement causes the program to halt and display the octal constant.

(BRLESC displays it in the a address of the halt order.) If the computer is

re-started manually by pressing the proper button (initiate on BRLESC), the pro-

gram will continue with the next statement.

it.

This statement should not be used without a very good reason for using

Examples: PAUSE

PAUSE 421

10. CALL a(b,e,d,).

This statement causes the subroutine named "a" to be entered and executed

with b,c,d... as the arguments, parameters, and store addresses. (Arithmetic

expressions are allowed.) For BRLESC FORTRAN, "a" could be the name of a function

(a subroutine with one result) and the subroutine being called must be one that

is a standard one on the compiler tape or one whose code is included in the pro-

gram as a SUBROUTINE (or FUNCTION).

The arguments used in a CALL statement must agree in mode with the mode

of the dummy variables that were used when the subroutine was defined. If there

are no arguments, they may be omitted.

CALL EXIT or CALL DUMP statements on BRLESC are the same as a STOP state-

ment. CALL CHAIN causes an error print and CALL PDUMP is ignored.

Alphanumeric arguments are not allowed in BRLESC FORTRAN.

•n T . nATT Cn"TDXf"V V "D ^

CALL TOTAL

11. IF (SENSE SWITCH i) si,s2.

This statement transfer control to statement si or s2 if sense switch i

(l < i < 6) is down or up respectively, (i must be a constant.) On BRLESC, the

manual read switches 15-20 are used as sense switches 1-6 respectively. However,

15

these switches may be "preset" by a program control card to be either "down" or

"up" regardless of their actual position. (See SETSSW in Section XV.)

Example: IF (SENSE SWITCH 3'>lif,92

12. SENSE LIGHT i where i is 0,1,2,3, or k.

If i is 0, then all sense lights are turned off. If 1 < i < k (actually

6 on BRLESC), sense light i only will be turned on. The rightmost four (actually

^j.^.y ^j.00 WJ. «^.u. KJKji- uii jjiuji^Lj^ O.J. c UöCU CLö bcube xignts. xmxiaxxy on HKI.K.SH,

all of them are off.

Example: SENSE LIGHT 2

13. IF(SENSE LIGHT i)sl,s2

If sense light i is on, statement si is done next otherwise statement

s2 is done next.

Example: IF (SENSE LIGHT 2)67,39

Ik. IF ACCUMULATOR OVERFLOW si,s2

This statement checks for fixed point add-subtract or shift overflow on

BRLESC and does statement si next if it has occurred. Otherwise statement s2 is

done next. (The very last operation may not be included in the check on BRLESC

and this test turns the indicators off if they were on before.)

K TP OTTATPTTTlVFTi mnrRT?T.mj cl c9

This does exactly the same as the IF ACCUMULATOR OVERFLOW statement

c:y».pj_cixiJ.c:U- auu v c; .

16. IF DIVIDE CHECK si,s2

On BRLESC FORTRAN, this statement checks for floating point division by

zero ("or unnormalized divisor) or fixed rioint division overflow. If either has

occurred in "one program, s-ca^emenx sx is aone nex"u; otnerwise s^ is aone next;.

(The very last operation in the previous statement may not be included in this

test on BRLESC and this test turns the indicators off if they were on before.)

VIII. THE FORMAT STATEMENT

FORMAT (Special Specifications;

This statement is not executed but is used to specify the field lengths,

spacing and the form of the data for either the reading of input data or the print-

ing (or punching) of output data. It is always used in conjunction with one of

-f-Viö nriTMif_nnfTMi+- cfofomonf c ar-tH rir*i&<z nri-f-.Vfi ncr hv it.^plf

If

Let n = number of times to repeat this field. (n is optional, used as 1 if

not specified.)

w = the width of the field (the number of columns or characters),

d = the number of decimal places to the right of the decimal point, (d

is used modulo 10 on 709/7090 but not on BRLESC.)

rm j-T J ^j? ^»J_TJ_ J_T 1- „ T „ _r _c>.: „,q „«,-*. HIKU one ovpea ui 1 icius onsio may ue bpei;ii leu axe;

nlw for integer numbers.

nEw.d for floating point numbers with exponents.

nFw.d for floating point numbers without exponents.

wX for spacing or blank columns.

nAw for alphanumeric fields.

wH for alphanumeric >hollerith' fields where the characters are

read into or printed from the w characters following the H in

the FORMAT statement itself.

nOw for Octal numbers.

Consecutive field specifications are separated by commas, thus "FORMAT

(l6,3Elk.6, FIO.7)'1 is an example of a FORMAT statement. Each complete FORMAT

statement specifies the maximum length of the record ^card or printer line; that

will be read, printed or punched when that FORMAT is used.

Two sets of parentheses are allowed in 709/7^90 FORTRAN and four sets are

allowed in BRLESC FORTRAN so that groups of specifications may be repeated within

a FORMAT statement. A left parenthesis may be preceded by an integer n to indicate

the number of times to repeat the specifications enclosed in parentheses. Thus

FORMAT (E12.5,3(l6,F9.3)) would be a format where the l6,F9.3 portion would be

repeated three times.

If the input-output statement list contains more items than specified by the

FORMAT being used, then a new card or line is begun and the FORMAT is repeated from

its rightmost left parenthesis. If this parenthesis is preceded by a repeat number,

lt Will De used in um ,t<;;->t; jtvurtxruUN Willie one [vy/ (w^w uieu.iu.a.1 o u.'j nub iiiuiüai/c i-HaX

it would be. If the FORMAT specifies more fields than required for an input-output

list, the rest of the FORMAT is ignored except any H fields that follow the last

A slash "/" may be used in a FORMAT statement to indicate that a new card or

line should be started. Thus FORMAT (I10/E15.6) used for punching cards would

cause a ten column integer to be on one card and a fifteen column floating point

i v

3n one nexu cara. xi a slash is used where a new line starts any-

way, it is ignored except N+l consecutive slashes will always cause N blank lines

or cards (or skip N cards for input).

Scale factors may be used with F type specifications (and in a limited way

with E type specifications). An integer, s, specifies the power of ten (scale

factor) to multiply the internal number by to obtain the external number, i.e.

input numbers get divided by 10" (not on BRLESC) and output numbers get multiplied
g

by 10 . The integer s is written in front of the nFw.d specifications and the

letter P is used to separate s and n, e.g. -2P4F10.5 or -2PF15.5 specify a scale
_ . -2 . —„--
factor or ±0 . On BRLESC FORTRAN, either a + or a - sign in front of s is used

as a minus sign. Therefore never write + signs in front of s. Once s has been

specified, the scale factor remains in effect for the rest of that FORMAT state-

ment (including repetitions) and will be used on subsequent E and F type fields.

A OP specification may be used to reset it to 0. For input, a punched decimal

point overides both the scale factor and the d specified. For E fields, only a

positive scale factor may be used and it does not change the value of the number,

it only indicates that s digits should be printed in front of the decimal point.

(it has no meaning for input E fields.) Thus the number 2 would normally print

0.20E01 for s = 0, but for s = 1, it would print 2.00E00 and s = 2 would print

20.00E-01.

I Fields

Input: Most FORTRAN compilers assume the integer to be punched at the right

end of the field without a decimal point; however, BRLESC FORTRAN

will accept it any place within the field and it may have a decimal

point.

Output: The integer will be "nunched at the right end of the field with a

floating sign. (All output has a floating sign which means that the

sign is in the column preceding the leftmost digit that is printed.

Leading zeros are not printed on I or F fields.)

E Fields

Input: The number mav or mav not have an exponent. An E or a sign, but not

~ "U"l ,-, «I- •~--- ~U ,-. -,-.^..-,,3 4- -^ 1 v*A 4 nn4- *~ 4-"U ~ ~4-.-.-v~4--,**-,,-* ^-P 4-"U -. ~>r-^^ v, ~v^+- rrTU ,-*
O. U-LCUJJY, UUX,y UC USCU l_,U UllXlLaUC OUC O l_.a.-l l_.Xl.lg, Ul bilC CA^AJllCUb. X11C

exponent may be less than four columns. If a decimal point is punched,

it is used and overides the s and d specification. If no decimal

T-'oint ^s "^unched then it is assumed to be after d. digits (columns)

T O

left from the start of the exponent. Most FORTRAN compilers require

that the number he punched at the right end of the field, but BRLESC

FORTRAN allows it anywhere within the field. Blank columns are used

as zeros (except after the exponent on BRLESC).

Output: The floating point number will be printed with a four column exponent

that includes an E, a sign, and two digits for the value of the expo-

nent. A decimal point is printed d digits from the right end of the

coefficient and if s = 0, a zero is printed in front of the decimal

point. If s > 1, then s digits of the coefficient are printed to

the left of the point. The sign immediately precedes the first digit

printed. The entire number is T>rinted at the right end of the field

of w columns.

F Fields

Input: The same as E fields, see above. ^This may not be strictly true for

709/7090 but will generally give the desired result except possibly

for the use of a scale factor.)

Output: The floating point number will be printed without an exponent and the

decimal point will be printed d digits from the right end of the field.

The actual number printed is 10 times the number that is in the com-

puter.

Input: The alphanumeric information is stored in the FORMAT statement, itself

immediately following the H. No transformation of characters is done,

the sign option setting for numeric input on BRLESC has no effect on

H fields.

Output: The w alphanumeric characters that immediately follow the H are

printed. Blanks are not ignored and there is no transformation of

any of these characters. Thus on BRLESC, "(+ - " characters will not

be the ones intended if the deck was punched using standard FORTRAN

characters at some other installation. (The "CHANGE + AND -" control

card does not change the + and - signs in H fields.) For tape output,

if an H field occurs at the beginning of a line, the first character

is used for vertical high speed printer format control instead of

actually getting printed.

19

Input; This causes w alphanumeric characters to be stored in the variable

name that is on the input list. To be compatible with 709/7090,

rsnjjiio^ i. uiinmn 0UWJ.C0 a. meiAxmuiii ui 8-LX cnaracuers per wora at tfte

right end of the word. If w < 6, the characters will be at the left

of the 36 bits with blanks to fill out the word. For BRLESC only, if

w > 6, then the additional characters will be stored in the next con-

secutive word(s), six per word. As with H fields, no transformation

of characters is done. This can be used to read FORMAT specifications

at run time.

Output: This causes w alphanumeric characters to be printed from the contents

of the variable name that is on the output list. The rules listed

above for A input are followed so that whatever is read will be

printed exactly the same.

Input: This causes w columns to be skipped whether they are blank or not.

Output: Causes w blank columns to be printed.

0 Fields

Input: This allows octal numbers to be read and stored at the right end of

BRLESC words in the same manner as integers. (There is no left nor-

malization.)

Output: This allows integers (octal or decimal) to be printed in octal form

at the right end of the field.

FORMAT statements may be placed anywhere within a program (or subprogram) except

as the first statement within a DO loop. (This restriction does not apply to BRLESC

but should be followed. On BRLESC, FORMAT statements are done as NOP instructions

so it is best not to place them where they will be done often.) FORMAT statements

are kept as alphanumeric information and decoded at run time, thus it is permis-

SIDJ-C oO USe A IleJ-QS oO read rUaWHl SuaLemenTiS ynxwiuuo unc WWJ.U. r uiu-mx y a. u j. U.11

time. The variable names of such statements must be listed in a DIMENSION state-

ment for 709/7090 but is not required for BRLESC.

If the list in an output list is exhausted and the next item in a FORMAT state-

ment is an H field, the H field is printed. (if the end of FORMAT and list occur

at the same time and an H field follows the last left parenthesis, it will not be

printed.) Note that a FORMAT may contain nothing but one or more H fields.

20

Blank characters in a FORMAT Statement are ignored except within H fields.

The w count for an H field must include the blanks within the H field.

The comma separating field specifications may be omitted when it follows an

H or X field specification or would precede or follow a parenthesis or slash.

(This rule may not hold for all computers but is true for BRLESC.)

Examples: FORMAT(3l5, (E15.8))

FORMAT(2HX-,F10.k,k(1PE12.5))

IX. DESCRIPTION OF IWFUT-OUTFJT LISTS

The names of the variables to be transmitted between the computer and the

input-out devices are specified on a list in the proper type of input-output state-

ment and the sequence of the names on the list determines the sequence of trans-

mission. Simple variable names, subscripted array names where the subscript control

is either specified in other statements or within the input-output list, and array

names without subscripts are allowed. Array names without subscripts cause the

entire array to be transmitted and the elements must (for input; or will (for out-

put) be arranged in the same sequence that they have in the computer memory.

(BRLESC and 709/7090 vary the subscripts from left to right, thus two dimensional

arrays are stored by columns; i.e. A(l,l), A(2,l), A(3,l) etc. is the sequence of

elements of the array A.) Commas are used to separate the names on an input-output

list.

Indexing information specified within the list is written after the names of

variables to which it applies and the names and the indexing information are all

enclosed in parentheses. For example A, (B(l), I = 1*10) would cause the trans-

mission of A, B(l), B(2), B(l0). Note that the indexing information is writ-

ten the same as in a DO statement with the increment taken as one if it is not

written. It is permissible to nest these parentheses, e.g. ((A(l,j),I = 1»5").

•J = 1,5)- Note that commas are used to separate items on the list and must be used

after a right parenthesis except for the last one. The indexing within each set

of parentheses is done to completion before going on to the next indexing specifi-

cation.

All of the input-output statements that transfer alphanumeric (not binary)

data make use of a FORMAT statement to specify the field types and lengths. The

type (integer or floating point) of a name specified on an input-output list must

correspond to the type of field specified in the FORMAT statement that is being

d.i.

used. All integer variables must use I fields and all floating point variables

must use E or F fields. (BRLESC does allow integers to be printed as integers in

E or F fields.) The FORMAT controls the maximum length of each line. A line is

shorter than specified in a FORMAT only when the end of the list is reached before

the end of the FORMAT. Whenever the end of the FORMAT is reached before the end

of the list, the FORMAT is repeated from the last right parenthesis and a new line

(or card) is started. (See Section VIII for more information about FORMAT state-

ments. ;

Constants and arithmetric expressions are not permitted on input-output lists

except indexing information may contain constants and subscripts may be constant

or arithmetric expressions.

It is permissible to read an integer variable and use it as a subscript within

the same input list if its name is separated from the place it is used by at least

two left parentheses. (This is counting the one used to indicate a subscripted

variable. Extra parentheses may be used just to meet this requirement.) Thus

J,(B(J)) is an example where the value of the variable J just read will be used as

the subscript for B(J). (For BRLESC, the extra parentheses are not required if

two or more variables or any indexing information separates the integer from where

it is used.)

Examples: A, B, I

"j ' *, \~"\"/1, -

((A(I,J), J = 1,10), I = 1,10), (R(K), K = 2,20,2)

X, INPUT-OUTPUT STATEMENTS

The following group of statements may be used in FORTRAN to control the flow

of information between the computer and input-output devices or secondary storage.
n^-^A -«~ ..*-a-: « ~ ~-« —, i« «"U-: « « *•. ~«^4--: n 4-«~~~ ~,-A ^« _*•»»» »*•*». „4-~~-_ "u—u ~~-u ~— T>T>T Ticto v^eu. u. icauing ui jjuiiuiixiig,, incline ox c oajjcö euiu., un ouiue uumpui/ex ö uui, nut un DIM inou,

drums may be used to read or record data. Most of the statements also use a FORMAT

statement to control the conversion of data between computer form and printer or

card form. However the READ TAPE and WRITE TAPE (and the corresponding DRUM state-

ments on computers that allow them) cause the transfer of data without any conver-

sion. This computer form of data will be referred to as binary information and

actuallv is binary numbers for a binary computer such as BRLESC. The other state-

ments cause the reading or printing of data in alphanumerical form. There are

three statements, END FILE, REWIND and BACKSPACE that do not transfer data but can

be used to manipulate the magnetic tapes.

22

In all of the input-output statements described below:

f is a FORMAT statement number or name.

list" is any allowable input-output list (See Section IX).

t is a magnetic tape number or variable. (See BRLESC restrictions

on t at end of this section.)

READ f, list

This statement causes decimal and alphanumeric data to be read from cards

(or tape 6 on BRLESC if the cards have been put on tape off-line and console

switch 36 is up.) (BRLESC may use all 80 columns for either input or output cards.)

If the list is omitted on this statement, one card will be read and ignored on

PUNCH f, list

This statement causes decimal and alphanumeric data to be punched on cards

(or actual tape 13 if console switch 38 is up. The tape output will be "formatted"

for the high speed printer by adding a 1 character at the beginning of each "card"

and an end-of-line character "A" at the end of each "card". The block length will

be at least 860 characters.; All 80 columns of a card may be used on BRLESC and

for tape 13 output, the "card" may be up to 160 columns long.

PRINT f, list

For most computers, this statement means to print the data on an on-line

printer. Since BRLESC does not have an on-line printer, the data is put on actual

tape 13 for off-line printing. The maximum line length for most computers is 120

characters, but is 160 characters on BRLESC.

The following description generally applies only for BRLESC, If the first

character of a line comes from an H field, it will be used for vertical format

control (after a transformation) and not printed. If the first character does not

come from an H field, an extra "l" character (sinele sr>ace) is inserted at the

beginning of the line. In either case, the zone bits will be set to 01 so that it

is possible to print PRINT output separately from PUNCH output when both are on

-ho-np 1^. Thp end-of-line character "A" is automatically inserted at the end of

each line. The tape writing is parity checked but there is no checking for end of

reel. The tape block length is at least 860 characters and this allows about

5 million characters or 60,000 lines of 80 characters each on a reel of BRLESC tape.

For BRLESC, a control card may be used to change all PRINT statements to

PUNCH statements.

23

T?T?A*n TTVTPTPTi rpAPT? •+- -F Hef

This statement causes decimal and alphanumeric input data to be read from tape

t. Each line of data is assumed to be a separate record ^block; on tape and may

be as long as 120 characters (l60 on BRLESC). If the tape was previous output

that has a vertical format character at the beginning of each line, provision

rvm o+ Vi£i mo/3 £s -1 >-i +V10 T?rVDMAT! -f*,~,-v* r*"H -r^-r^T vi/r -*-V\#i +• *tVin-v*n rt4- ^-~» t T-C» 4-T A. - • JllUüU kJC UIGL'-LC J.11 OH<3 A" V/lU'lTYJ. ± \J 1 OIYJ.JJpJ.llg OllCLO LliaiQUL/Cl . ^ XX L/XIC Oäpt2 Wub pieVluUS

BRLESC output, the first character is probably not a blank.) The tape reading is

parity checked on BRLESC but there isn't any checking for end of reel.

If the "list" is omitted with this statement, it will cause one line to be

read and ignored on BRLESC.

Just INPUT may be used instead of READ INPUT TAPE in this statement on BRLESC.

WHITE OUTPUT TAPE t, f, list

This statement causes decimal and alphanumeric output data to be recorded on

tflnp +-. Tü».r*ll linp nf rla+.n "i K rpcnTflpfl PR nnp "rponTvi I'hlnr'lr) on ^-.VIP t.n-no nnH mav

not exceed a total of 120 characters (loO on BRLESC). The first character will be

used as a vertical format control for the high-speed printer and is determined in

the same manner as for the PRINT statement described above except the zone bits

The ta^e writing is Tiaritv checked on BRLESC but there is no checking for the

end of a reel. About 9500 lines of print will fill a BRLESC tape.

.T„c+ rtf I'liPnT mo-ir Vio ncofl incfporl nf TJRTW DTFnPIFT1 TAPP in -t-hi c B+nl-pmont- nn RRT/RRn
\J Ujt U \J _/ \J J.1 UX • • •• '. y l_/ V- V-t. 1—' Wt. J_ J. A k.J V.J v_- IJ, VI •^y J- II X I.A. J_ 4(| NS <_/ A X- V -X. J_X 4_L J_l -1- XX UX X-l- W kS uu. \y S-JH1.\ - xx v/ V44 X-'X • I I I •* " * •

READ TAPE t, list

This statement causes binary information to be read from tape unit t. It

should be used only for reading data that was previously put on tape by the use of

the WRITE TAPE statement described below. This statement will not read more data

than was specified on the list of the statement that wrote the data. ^Such a «TOUT»

of data is defined to be a "logical record".) If less than the entire logical

record is read, the tape will move to the end of the record. (if the list is

omitted entirely, the tape still moves to the next logical record.) If an attempt

is made to read more data than is on one logical record, the unused portion of the

list will be ignored.

2U

On BRLESC, binary logical records are subdivided into tape blocks of 128

words each. Within each logical record, the first word of each tape block is

zero except for the last block. The first word of the last block contains in the

a address the number of words in the last block (not counting this word) and in

the y address, the total number of blocks in the logical record.

WEITE TAPE t, list

This statement causes all of the data specified on the list to be written as

binary information in one logical record (see READ TAPE) on tape unit t. It is

useful for temporarily recording data on tape that may be read back into the com-

puter by using a READ TAPE statement at a later time. See the explanation of the

READ TAPE statement for a description of the way the information is "blocked" on

the ta^e.

END FILE t

TTni c; Q+-Q+- OTYK=>n+_ nOHCOC O f I 1 O mQ-y^lr +• r\ Vic T.T*V*-I + + cm r^n f or.a +•

BACKSPACE t

This statement causes tape t to be moved backward one "logical record". This

is all of the data written by the WRITE TAPE statement that wrote the record for

a binary tape, or is one line (or "card") if it is an INPUT or OUTPUT tape.

REWIND t

This statement causes tape t to be rewound without being interlocked.

READ DRUM i, j, list

This statement is not allowed on BRLESC and causes an error print. For the

709/7090, it means to read data from drum i beginning at the jth word. (Variable

subscripts are not allowed on the list.)

WRTFE TYRT7M -i . 1 . 1 i nf-.

This statement is not allowed on BRLESC and causes an error print. For the

709/7090, it means to write data on drum i beginning at the jth word. (Variable

subscripts are not allowed on the list.)

Additional Notes on Input-output Statements:

The f (FORMAT number or name) may be omitted in READ, PUNCH or PRINT state-

iriciiuö uii j3oiir.Qu emu. un±ö win uautjt; a. ruruviH.x v_L.TO.CJXC:.2) IU üe usea automaticaxxy.

The statement numbers 1 and 2 may be used to automatically specify FORMAT

(5F1^.5) and FORMAT (1P5E1U.5) respectively without including them as part of the

program. If 1 or 2 or both are used to refer to these FORMATS, then that statement

O

number must not be used in the program for any other purpose. If either one is

used as a statement number in a program, then the corresponding automatic FORMAT

cannot be used.

The omission of a "list" on any of the input statements will cause one record

(card, line, or logical binary tape record) to be read and ignored on BRLESC.

Some computers may allow the FORMAT specified to be used to skip more than one

record. Note that a FORMAT should be specified when the list is omitted although

it is not necessary to do so on BRLESC.

The number of print positions on BRL's high-speed printer is l60. BRLESC

FORTRAN allows at most a total of 170 characters for a line including the vertical

format and end-of-line characters. When the 1^-01 can be used to print BRLESC tapes,

the line length will probably be restricted to 132 characters.

ADDITIONAL NOTES ON THE USAGE OF MAGNETIC TAPE ON BRLESC:

All of the tape reading and writing is parity checked. Rereading erroneously

ten consecutive times or rewriting wrong twice after each of five consecutive "GAP

instructions" causes an error print and BRLESC stops running the programs.

There is no checking for end-of-reel conditions in BRLESC FORTRAN.

Single line per block INPUT or OUTPUT tapes will only hold about 9500 lines while

PRINT or PUNCH tape output will hold about 60,000 lines per reel.

The only restriction on switching between reading and writing of tapes is

that writing should only begin at the beginning of a tape. (if writing is started

in the middle of a tape, an extra "block" of random bits may be written on the

tape.) Whenever a tape on BRLESC is switched from writing to reading, a file

mark and an extra one word block that says "END TAPE" is automatically written on

the tape before the final file mark is written and then switching is done. (This

extra block is ignored by a BACKSPACE statement.)

The tape unit number t may be either a decimal integer constant or variable.

If t is a variable, the integer value it has at the time the tape statement is

executed is used as t. The following table shows the correspondence between the

value of t and the tape switch on BRLESC. The actual tape handler used depends on

the switch setting.

26

Switch

1 or li 1

2 or 12 2

3 or 13 3
k or lU 4

5 or 15 5
6 9

7 10

8 11

9 12

10 7 ((temporary or output only)

Note that 1 < t < 15 and that t is used modulo ten for 11 < t < 15. (if t > 15

is used, it will be used modulo 16.) PRINT (and PUNCH) tape output uses switch

13, the compiler itself uses switch 15 for its own program and uses switch 7 for

temporary storage while compiling, and card input put on tape off-line uses switch

6. (Usage of switches 6,7 and 15 are identical to FORAST.) When leaving problems

to be run on BRLESC, the switch number rather than the t number should be used in

the instructions to the computer operator.

All printer output is formatted for variable length lines for the off-line

high speed printer. PUNCH tape output automatically has a single space character

"l" inserted at the beginning of each line and an end-of-line character "A" at the

end of each line. The same is true of PRINT and WRITE OUTPUT TAPE output if the

first field of the line is not an H type field. If the first field is an H field,

then the first character of the field is used for vertical format control after

undergoing the following transformation:

h Jf'lelcL Tape

+ or - blank (no space)

0 or 2 2 (double space)

1 or 8 8 (start new page)

Others 1 (single space)

me zone OILS OI T^ne lormao cnarac^er wm uc ww CAUC^I/ JTX\XUX UUOJJLIL, Wü_L nave u±.

FORTRAN programs are supposed to contain an END FILE statement and a REWIND

öoo.L.triiiciiu- xux ceicii uuupuu ocijje u.t.tru. j_n uiit; piu^iaju aim a. ruiiWiiMU m,a.T;enienG I or eacn

input tape. If this is not done at the end of the program, the operator will have

27

to manually do these operations and the output tape will not have a file mark at

J.UQ cun, jTiixnj. y,u_i rununy ucipc uUopui, UH Drujcjou J.t> auoumct Licaiiy compo.e~cea ana

rewound unless PAUSE is used to halt the problem instead of STOP, CALL EXIT, or

CALL DUMP.

XI. SUBPROGFAM STATEMENTS

TioT^rrm ATVT _IT L -• ~ „^ _ Ti/vr-irrm A TIT J i_ _ J _ __• j_ _ a _ _ i , • runxtuiii anuws becnuiib ui a runrnHiY program LU De aesigna~cea as suDroutmes

that may be used at many different places in the main program. The SUBROUTINE,

FUNCTION, RETURN and END statements allow the programmer to define and name por-

tions Oi nis program as subprograms arm tney provide information that allows the

compiler to provide for the substitution of variables at run time and standard

entry and exit methods used for subroutines.

Any subprogram may use any of the FORTRAN statements within itself except

SUBROUTINE and FUNCTION statements. Any subprogram may use any other subprogram

or subroutine of any type, including arionmetic statement functions ^ see Section XII y

that are defined at the beginning of the subprogram. Recursive subprograms (sub-

programs that use themselves) are not allowed.

1. SUBROUTINE a(b,c,d,e,)

This statement marks the beginning of a subprogram that we shall call
r-* CrrTDTOATTmTTxTT? rTTV, „ v^nmn ^N-P 4-VI^ C7T TD "D riT FTI I ML' -T r- .-. ri r*A T^ n A ^ nt.n 4-V*~ *-»«*«rt^ n-P a. U\JU±\\J\J J. J.J.V.CJ. nie iicuiitr ui one uujjiwu±±iiu x o a. anu U,^-,OL,C, ... CLJ. c one iitianuD ui

nonsubscripted dummy variables that will be replaced at run time by the actual

variables that are listed in the CALL statement that causes this subroutine to be

Performed. The subroutine consists of the FORTRAN statements that follow this

statement down to an END, FUNCTION or another SUBROUTINE statement.

1UC iiojllt W-L one L-»v ±J1 iw O" X J.-LT-U ^L^/^KJ nu u niux^ao^ one III*_/*J.^ i^x o.nj' i ouuj- u anu

hence any letter may be used as its first character. However, the last character

of the name must not be F unless it has less than four characters.

Except for the COMMON storage, all variables within a SUBROUTINE (or

FUNCTION) are assigned storage that is unique and not used by any other part of the

program. Thus the variable X may be used in several SUBROUTINES within a program

and each X will be different unless it appears in the same relative position in

COMMON statements in each of SUBROUTINES.

No storage is assigned to the dummy variables; on BRLESC, DM will appear

in the dictionary instead of an address. If a dummy variable is an array name,

28

i fl prit"! rsl wi t,h the size of snv flpt.ual variahlp lined t.n renlapp it, nr pi RP its J.W.

size must be definea oy otner aummy vanaDies. jjummy variaoie array subscripts in

DIMENSION statements is a feature of FORTRAN IV and is not allowed in other ver-

sions of FORTRAN.

Example: SUBROUTINE POGO(A,XX,L)

2. FUNCTION a(b,c,d,...)

This statement is similar to the SUBROUTINE statement but should be used

whenever the subroutine has only one result. No dummy variable should be listed

for the result as it is intended that the function will be used in an arithmetic

expression and the result is simply used in evaluating the rest of the expression.

The name of the function is a and b,c,d represent nonsubscripted dummy

variables. The name of the function does indicate the mode of the result by its

first letter and the final character must not be F if there are more than three

characters in the name. The first character of the name "a" must be I,J,K,L,M or

N if and only if the result is integer.

Within the FUNCTION subprogram, some statement should store a value in

a variable that has the same name as the name of the subroutine and this will be

used as the result.

There must always be at least one dummy variable for FUNCTION subprograms.

Example: FUNCTION LOW (Q1,T)

3, RETURN

This statement may be used as often as desired within subprograms ^uJB-

ROUTINE or FUNCTION) to indicate the point or points at which execution of the

subprogram should stop and control should return to the program that is using the

subprogram. It should always be used at least once in every subprogram.

h. END

This statement may be used at the end of any subprogram or at the end of

the main program. It is not required on BRLESC. All program decks on BRLESC do

require the very last card of the entire program deck to be a card that has an E

in column 1=

The sense switch options allowed in 709/7090 END statements will be

isrnored on BRLESC.

29

Most computers other than BRLESC compile each subprogram as though it

is a complete FORTRAN program and only provide a binary card deck that must be

assembled with other binary decks to actually run the program. Hence they require

an END statement at the end of each main program and each subprogram.

For BRLESC, the main program and all the subprograms must be compiled

at the same time and thus can be run without the use of any binary decks. BRLESC

has a limit of 30 subprograms used in any one nroeram deck.

XII. PRE-DEFINED FUNCTIONS AND SUBROUTINES

771 f\1~\ M fl » A TVT rurviTLRDj suurouunes are separated into two classes, {L) functions are those

subroutines that have only one result and hence may be used in arithmetical expres-

sions; and (2) SUBROUTINE subprograms (See Section XI) or other subroutines that

may have more than one number as a result and may be used only by CALL statements.

Functions

There are three methods of defining a function. They are

1. Pre-defined functions that may be used by using the pre-defined name,

2. Arithmetic statement functions.

3. FUNCTION subprograms. (See Section XI)

Unfortunatel'"" there is not much standardization of the pre-defined sub-

routines that are allowed on various computers. Appendix A lists the pre-defined

functions that are allowed on 709/7090 and BRLESC.

Naming Functions

Pre-^efineu. function yand ari^iiiueuic soaoeroeno lUncoion; names muso axways

end with F (a total of seven characters are allowed) and must begin with X only

if the result is an integer. Variables must never be given a name that is the

same as any of the function or subroutine names either with or without the terminal

F. For BRLESC, the terminal F is not necessary when using pre-defined functions

but is necessary in both the definition and use of arithmetic statement functions.

The naming of FUNCTION subprogram functions uses different rules that are the

same as for naming arrays. An initial letter of I,J,K,L,M, or N indicates an

•i !-»+• o frc^T" T» o c?n T +• ar\r\ -f-Vio 1 QO-H /-*VIQ "r>a r*"t" of"

characters in the name.

30

Use of Functions

Any of "the "three "types of functions may ue useu. in an aritumetic expression

by writing its name in front of a pair of parentheses that enclose the list of

arguments. The arguments must correspond in mode and number to the dummy var-

-i"2"W"loC -nc^'^ "?>-> H Ä-K -i m -i «re -t-V» ä -Pi i*-i />+ -i /-\in Qi in/-*£±c*r>Aira o >* m i«i^v-i+- c Q v» ä C*ä-I^O Y»«ü + ör^ VMT xau-L^o uctu xu uciiiini^ uiic 4- un^uxvii« UU^V-CDOUC »A ^Luucn^o ait Dcpaiaocu u.y

commas and they may be arithmetic expressions.

For BRLESC, any function may also be used in a CALL statement by including

an extra variable name that specifies where to store the result.

Arithmetic statement functions are functions that can be and are defined by

uuc CLJ. J- uiillLcr u x »J D OCL ocriucrii u CL u uuc; ucgi.1uiJ.u5 ux a. pxugxcuu \^± ouupi ugiauuy . xiic; im.iuc;

of the function followed by the dummy arguments enclosed in parentheses are written

to the left of the = symbol. The arithmetic expression that describes the function

in terms of the dummy variables is written to ri^ht of the = svmbol. The dumm^

variables cannot be subscripted. Any variable used in the expression that is not

a dummy variable will be identical to the variable of the same name in the program

(or subprogram) in which the statement is contained, (An arithmetic statement

function definition only applies and can be used only in the program or subprogram

in which it is located.)

An arithmetic statement function may use any of the other types of functions

and may also use other previously defined arithmetic statement functions. All

arithmetic statement functions must precede the first statement that gets executed

j.n one program or suuprogram.

The dummy variable names used must indicate the same type of arithmetic that

-1 c VO/IHT vifi/^ T.TVI övi +V10 •P"iiv»i-"*-t-"i/"^y"i •{ o o n4-nol 1 TT n eon

Example of defining an arithmetic statement function:

FUHF(A,B,C) = A**2 - SIKF(B*C)+C

Example of using this arithmetic statement function:

T = Q + FIMF(X,S + EXPF(V**2),lU.)

A subroutine may be pre-defined and exist on the compiler tape or it may be

A ~-p4 ~,~A v,r „ CTrD-Di-YrTm-nvro „, ,v~--"~ ~-~~• t o~~ a~„-i--: „•*, VT ^ o, ,v»,^,,4- -t «-.,» •„,, -u« ~,--,,-.-,~
uci iiicu uy a. IWHJ-DIAWUX-LIYXJ Du.Djjj.ugj.cuii. ^ ucrc ucuuxuu AX. J üUUI UUUXUCö uicL^y uc gxvcu

any valid name (no restrictions on the first or last letter) and may only be used

by a CALL statement.

31

The following subroutines are pre-defined in BRLESC FORTRAN:

SETMSI (j) Set minus sign for input.

SETPSI (j) Set plus sign for input. (Not necessary, anything not

minus is plus.)

SETMSO (j) Set minus sign for output.

SETPSO (j) Set plus sign for output.

,,T .~ * 4« „„ -i «4-~«~-« ASS«* ~4-« v^+ • wxiei c J j.ö an j.iiocg,ci i_uuoi/oiio,

0 means blank.

1 means y(l2) punch.

2 means x^ll' Tumch,

3 means x or y punch.

SEXAPR(A,B) Sexadecimal print from A to B.

B.IN Goes to binary input routine after saving a return jump

instruction in 073.

POWER.(A,B,C) Computes C = A**B where B may be integer of fl. pt.

SINC0S(A,B,C) Computes B = SHüF(A) and C = COSP(A).

Additional pre-defined subroutines will be added in the future.

XIV. FORTRAN PROGRAM CARDS

BRLESC FORTRAN uses the same card format for punching FORTRAN programs that

is used by other computers.

Columns;

1-5 Statement number (integer).

6 Continuation Card if not zero or blank.

3 f^Ti nrn A *
T
 — j Y - [d. une ü'UKTiuUN ST,aT,emenT,.

73-80 Identification.

The statement number must be a decimal integer. Leading zeros are ignored.

Trailing blanks are also ignored, at least on BRLESC.

UOXUmn X IS aiSU Ubeu ou J.iiu.j.ua.i,t: öpctioi. L,jyco UJ. <_Q.HJ.B. XIIC luxiuBiug j-jLoi/

shows the special characters that indicate special cards:

32

C Comment card. Columns 7-80 may be used for comments.

* 709/7090 monitor card or BRLESC control card.

B Boolean statement card.

D Double Precision statement card.

I Complex Arithmetic statement card, (Not allowed on BRLESC.)

F Used to specify names of subroutines used as arguments.

7-8 End-file signal on 709/7090, ignored on BRLESC.

J BRLESC only, jump to binary input routine immediately.

E BRLESC only, is last card of program deck.

Column 6 is used to mark cards that are a continuation of the previous card.

It is used as a continuation if Column 6 contains any character other than zero

or blank. The nnlv exception to this rule is that the first card of a •nrocrram ma'5''

use Column 6 for identification information if it has an * in Column 1. BRLESC

does not limit the number of continuation cards allowed but 709/7090 and some other

computers restrict a statement to nine continuation cards.

Columns 7-72 contains information, not more than one statement, comments,

control information, etc. depending on the type of cards as indicated by Column 1,

Columns 73-80 are ignored by BRLESC and may contain any desired identification.

Blank columns are ignored except when they are in an H field in a FORMAT

statement.

Blank cards will be ignored on BRLESC.

IVT/^+Q +V.Q+ •»+• iB TMsvml oo-l'Kl o +• r\ ii es VTiQ A RT /-»t-\rl 4 n CT oJioo+o + n TJT» -t +• o 'Pn'RTnA'M IIUUC UllO. \J J. U a.kj Uv^J lllj. kjt^_l.l^-l_\~ UU 14.U\~ X' VlUlia± v,uuilig Ull^wu UW rt .1 j. vj v, x U11X1UU1

programs. It only means that the key punchers must not use Column 6 as part of the

statement number and must not allow a statement to go past Column 72. It does not

matter whether the statement starts in Column 7 ov 11,

F Cards

If the name of a subroutine or function (either pre-defined or defined by a

subprogram; is used as an argument for another subroutine or function, its name,

without the terminal F, must appear on a card with an F in Column 1. This F card

must be in the program (or subprogram) that uses the subroutine as an argument and

uict,y uc cxiij wiici c wxuiixu ona, u pj. v-*g,j. cuiu

The names of the subroutines are to start in or beyond Column 7 and are sep-
- --. ••»

Q T»O +• ari "^ir /-»/""wmvio c? » V. v ' ".

Example: F SIN, EXP, FÜN3, ATAN , . TT, ^

33

The terminal F is also to be omitted in the statement that uses the name as

an argument. At least on BRLESC, arithmetic statement function names may also be

used as arguments for other subroutines without appearing on an F card. However,

the terminal F must always be used on arithmetic statement function names on BRLESC-

When writing a subprogram that will accept subroutine arguments, the dummy

variable should not have the terminal F in the SUBROUTINE or FUNCTION statement but

must have a terminal F added to it when it is used in arithmetic expressions.

XV. BRLESC CONTROL CARDS AND DICTIONARY PRINTING

The use of certain control cards are allowed to affect the compilation of

FORTRAN programs. Most of these apply to BRLESC FORTRAN only, although some are

also used on 709/7090. All of the control cards are marked with an * in Column 1

with the control information starting in or after Column 7.

* The first card of a program that has an * in Column 1 ^except a

DATE card) is used as identification and is printed in front of the PUNCH

output. Columns 2-80 may be used. (On all other cards with * in Column

1, only Columns 7-72 may be used.)

* CHANGE + AND -

This card reverses the meaning of + and - signs in the program deck,

except in FORMAT statements. BRL +(ll) and -(12) signs are used initially.

* cmmq.qu i J OT L
—"*"' * JDOWNJ

This control "statement" allows sense switch i to be "preset" either

UP or DOWN. By using this control card, the operator can be relieved of

actually setting the sense switches.

* PRTOPU

This control statement causes the compiler to translate all following

PRINT statements as though they were PUNCH statements. (Allows card out-

put instead of tape.)

* RTTORC

This control statement causes the compiler to translate all following

READ INPUT TAPE or INPUT statements as though they were READ statements.

(Use card input instead of tape.)

WTTUTU

This control statement causes the compiler to translate all following

WRITE OUTPUT TAPE or OUTPUT statements as though they were PUNCH statements,

3^

* LIST
* SYMBOL TABLE

Either of "these causes the storage dictionary to he printed. The

asterisk in Column 1 is not required on the LIST card.

The dictionary is printed with names of variables arranged in alpha-

betical order within each subprogram. Functions (except arithmetic

statement functions) and subroutine names will be preceded by two aster-

isks. Main program names will be preceded only by two blanks and sub-

program names will be preceded by one character and one asterisk. The

character preceding each subprogram name will be 1,2,...,9,A,B,....T

corresponding to the sequence in which the subprograms appeared in the

program deck.

Following each name will be the sexadecimal memory address that has

been assigned to the name. Following this address, any of the following

letters may appear:

A indicates an array name.

V indi fflt.ps am n'nt.papr vDrinhlo

C indicates the name was in a COMMON statement.

E indicates the name was in an EQUIVALENCE statement.

u indicates tue name was used only once.

Statement numbers are printed at the right end of the six character

name position and therefore always precede the names of the variables in

any program. The compiler usually adds a few names to the dictionary to

indicate temporary storage and special subroutines. The name $ SUBS, is

nrlnted at the end of the dictionary to indicate the length of the pre-

defined subroutines. The subroutines extend from this address down

through 0103L and includes all of the input-output storage and sub-

routines. The io NOS. name printed as the next to last name in the

dictionary indicates the length of the constant pool . This storage,

from 0S0 down to but not including the address printed after $ NOS., is

used to store the constants and the "array words" required by the pro-

35

For array names, the address assigned in the dictionary is not the

initial address of the array, but is the address of the "array word" in

the constant pool. The "array word" contains the dimension of the array

in its leading two "bits, the maximum value of each subscript, (15 bits

for each subscript starting at the right end of the B address and going

to the left), and the "base address" at the right end of the array word.

The "base address" is not the initial address of the array either; for

nnp Hi'mpncinnnl nrrnvc n f nc on o "1 o c c -f-Via-n -fho -i-m*+-io1 ^AA-r^^n«- -f1/-»-*•<

two dimensional arrays, it is (imax. + l) less than the initial address,

and for three dimensional arrays, it is (imax + Imax • Jmax + l) less

than the initial address, (imax and .Jmax are used here to represent

the maximum declared value of the first and second subscripts respec-

tively for an array.)

Whenever the dictionary is printed, the constant pool is also printed

so that the programmer can determine the actual storage assigned to arrays.

A better method of printing the array storage assignment will be added

in the future.

Names in COMMON are assigned last, so the last name in the COMMON

assignment within the subprogram that has the most COMMON storage will

mark the end of all the storage used by the program. The instructions

for the program and all the subprograms are stored first, then all the

variables not in COMMON are assigned storage immediately after the instruc-

OXUllb äLHU. OXIX to X to 1U11UWCU Uy OliUtoC Well IclUXCü _Lii ^WrilylV-/llJ .

* LIST8
* LIST (S.CODE)

Either of these control cards cause the dictionary and the sexadecimal

code for the entire program to be printed. Four instructions are printed

on a line with the address of the first one printed at the beginning of

the line. The * in Column 1 of LIST (S.CODE) may be omitted unless LIST

is one name ox

* LIST (B.CODE)

XUJLö uunoxux. caiu cauieb uxie cuuic Liiugicuu anu. uuc öuuiuuoiuco xu

uses to be punched on binary cards with absolute addresses. To use this

deck to run the program, it must be preceded by a binary input routine

and followed by the standard set of FORTRAN input-output routines and a

jump to 073. The * in Column 1 may "be omitted unless LIST is the name

of an array.

XVT. BRLESC COMPILER ERROR PRIM'S

The BRLESC FORTRAN compiler checks for a limited number of types of errors in

the program it is compiling. It definitely will not find all possible errors, but

some errors will cause one of the error prints listed below. The type of error

can be recognized either by the number that follows the word ERROR and precedes

the comma or by the "error word" that is printed. The form of the error print is

where

t

m

Error word

Ident.

W

TAPE ERROR WORD

1 ILL.CHAR.

2 SYM.ST.NO

3 MIXED EXPR

k INT**FLT

5 IL.RETURN

6 WO = IN DO

7 SUBPRS. 30

8 BIG ADD.ID

9 NO, CP.G0T0

10 ILL.STAT.

11 FLT.INDEX

12 ILL.DIM.

FORTRAN ERROR t,m Error Word Ident. W First 30 cols, of * Ident.Card

= type of error

= ten col. field at which error was detected; m = 0,1,...,7

= ten alphanumeric characters that describe the type of error

as listed below.

= cols. 73-80 of card at which error was detected.

= rest of the mth field on the card at time of error detection.

DESCRIPTION

Illegal character on program card.

Symbolic statement number, not all decimal digits.

Mixed expression, integer and fl. pt. arithmetic.

Integer raised to fl.pt. power is illegal.

Illegal RETURN statement, used in main program.

No equals symbol at proper place in DO statement.

Tried to compile more than 30 subprograms.

Big address is indexed. Program is too big.

No comma at proper place in computed GOTO statement.

Illegal type of statement or too long a name at beginning

of arithmetic statement.

Subscript involves a fl.pt. number

Number of subscripts is not same as dimensionality of the

array.

37

TYPE

13

T P-
JO

23

ILL.COMMA

ASD.ST.NO

COMPLEX AR

XD £QU. TAULU;

17

18 ARRAY.KEF

19 DICT.FULL

20 COL.7 NO.

21 SENSE > 6

22 DO NO END

LONG NAME

2k IL. EQUALS

25 IL. - BOOL

26 IL. / BOOL

^ (
n A T T /"ITT A -T»T
UHI rli urLHJ.1»

28 IL.**BOOL

29 DRUM STAT.

30 IL. 10 LIST

ERROR TAPE 7 FORTRAN

Comma is used improperly in an arithmetic expression.

Assigned statement number; same statement number used twice.

Complex arithmetic cards (i in Column l) not allowed on

BRLESC.

EQUIVALENCE table is full.

^^/iMiuvyn name was previously assigned.

Array name used before it was defined=

Dictionary is full.

Statement begins with a decimal digit.

Sense light or Sense Switch number greater than 6.

Statement number used in DO never appeared. (it may have

been missed due to another error.)

A name was seven or more characters long and seventh

character was not an F.

Illegal = symbol or arithmetic was specified on the left

of the = symbol.

Illegal "not" operation on boolean card.

Boolean division is undefined.

"CHAIN jobs" cannot be done on BRLESC. \.Segmentation of

program using tape.)

Boolean exponentiation is undefined.

Drum statements not allowed on BRLESC

Illegal input-output list.

Special error print that usually means machine error.

It must be remembered that the above mentioned cause is only the probable

error. Sometimes some type of undetected error later causes one of the detected

error prints at a point where no error exists. It also happens that some errors

are not detected until the next card has been read. (W=m = 0 when this happens.)

38

After each error print, the entire card that the compiler currently has in

the memory will also "be printed. (if w = m = o, the error was probably on the

•v% -wi^^-ir-i'-xT-ir-' /-.«-»-*-• /^ c\+- Vi ^^-t-*i T -i r-> /^ -1 4- -v% -vtf^Vi nVi ~] 1 r -ir> "f" Vi *"^ «-ir-i T.*4 4- Vi «-» +- *1 *"^ v^ 4- «-» -i v^ o -4- "U-i ^^ *-x T*I -i-> ^^ -w. 1 uievj.uoio uaiuj uoiiciHioc j. o piuuauxj xo one *~a.j. u. oncxo uuiioaj.liD one CiiVi , y

The ERROR TAPE 7 error print usually indicates a tape error on the temporary
^,4-~-««~~ 4-«-~~ 'V T4> 4-"U~ •«-: ~"U4- ^«.3 ~4* 4-l~~ 1 •?«« ««-.,-« TJAOTTTTV 'Cvnrj/'Yn 4-1 J-1-1 _ -• _
»i/Uiagc oauc [. 11 one ixgiio CIIU. ui one liuc oap .r*inxJ-J- LVTUAUJA, Ollen ollXb Xb

indeed a tape error. If the right end of the line has some other characters, they

are a symbol that cannot be found in the dictionary and this may be caused by

•— -1- W ii •—J. u. UOIU^ _. .i .A. v^ J.. w J. V_A 111"—l V11XÜV. ^ J- J. W J. Xll U11V« ^-4- -1- ^ KJ XVlllJfJ- jf UUU.1 ^llj-llg LJ J. U V, \, U ij i

XVII. BRLESC RUN ERROR PRINTS

Some of the pre-defined FORTRAN subroutines used on BRLESC detect certain

errors in the data they process. When such an error is detected, a RUN ERROR line

is printed and the program is not allowed to continue to run. The error print

consists of one line of information of the following form:

RUN ERROR "Error word" Date Cols. 1-30 of Ident. Card LE No.

when "Error word" is an alphabetic word that identifies the type of error.

Date is the date.

LE is the location (in decimal) of the entry to the subroutine that

detected the error.

No. is a number that in some cases was an illegal argument.

Run Error List: (X and Y represent arguments.)

ERROR WORD SUBROUTINE REASON N0-

LOG X NEG

EXP BIG X

ARCSIN 1+

SINCOS N S

LOGF

EXPF

ARCSINF or
ARCCOSF

SINF or COSF
or SINCOSF

X < 0

X > 354.89

I X I /2n > 16 ' J

X/Loge2

Ivl
1 •"• I

X/2n

POWER oTO-

CVFTOI BIG

POWER.

XTNTF or
XFIXF

X = 0 and Y < 0

j X j > 16
- I
14

Zero

39

ERROR WORD SUBROUTINE

END TAPE t READ TAPE Tried to read beyond information written on tape t.

TAPE TKA u Persistent tape error on trunk A where u is actual tape switch

number and "No." is total number of tape errors.

TAPE TKB u Same as TAPE TKA u except error is on tape trunk B.

BAD FORMAT Illegal character in a FORMAT statement.

N0(FORMAT More right parentheses than left parentheses in a FORMAT statement.

LONG LINE Output line is more than 170 characters.

XVIII. OPERATION OF THE BRLESC FORTRAN COMPILER

The BRLESC FORTRAN compiler exists on magnetic tape in much the same manner

as the FORAST compiler and operates in a very similar manner. Many copies of the

compiler and the pre-defined subroutines are on one tape and the tape reading is

arranged so that it is checked and automatically corrected by using the next eopy

on the tape. The tape automatically backs up twenty copies after the last copy

on the tape is used. Normally, successive copies are used for compiling successive

nrofirrams.

Much of the translation is done concurrently with the reading of the program

cards (or tape). The partially translated code is put on a temporary tape and the

dictionary and constant pool are kept in the memory. After the last card of the

program is read (E in Column l), all unassigned symbols in the dictionary are

assigned storage. The memory that will be used by a program is cleared to zeros

and then the temporary tape is read, the translation of each instruction is com-

pleted and it is stored in the memory for running. Programs are stored from 010^0

and may extend to the end of the memory. Next, the subroutines are read from the

compiler tape and the ones needed are stored backwards from 09K0. (The standard

input-output routines occupy 09KO-103L.)

The efficiency of the generated code is good except for the referencing of

arrays with variable subscripts. Such one dimensional referencing causes one extra

order to be one, two dimensional referencing causes two extra orders to be done

and three dimensional referencing causes four extra orders to be done. These orders

are extra in the sense that they would not be needed in the corresponding FORAST

or handcoded programs. Subscript expressions and other arithmetic expressions are

evaluated as they are written except that instructions involving only constants

will be done at compile time. The compiler does not presently make use of the

"accumulate" option allowed on BRLESC instructions.

XIX. SPEED OF BRLESC FORTRAN COMPILING

The BRLESC FORTRAN compiler is very fast and hence is designed for "load and

go" operation. Programmers are encouraged to keep their FORTRAN programs in

symbolic form and translate them each time they are run. This wastes very little

if any computer time and is most convenient for the programmer.

Most of the translation is done concurrently with reading the program cards

at the present maximum speed of 800 cards per minute. The total time required

for translating a program consisting of C cards can be approximated by the formula:

time in sees. = 2 + C/l3 + C/75

xxie c t>ei;<jxiu.ö j.» uumjjuci oapc o-uiie, one \,j ±.j xa utuu icau OJ.IUC tuiu. <*>/ | ^ aiiu«b

time for reading the temporary tape and completing the translation. If the program

to be translated is put on tape off-line, the C/l3 term can be reduced by at least

WiiC — IICXJ-J. • UU Kji.X\, OJ. U.Ü kP-J_C~i. U J-Wli J. CA U V^ J- •._"? O.UUUU | V./ V^ U UU, O V—ilH_J.A l_(O LM L ILI,^ J I H U^ X J- Ulli UCllUO

or about I5ÖÖ statements per minute from tape. (The tape rate will vary consid-

erably with the complexity and length of the statements being translated.)

/"MYT TsT""^ Trin/•! AA. KUiNKXiMu ^'UKT«AW muuKAraD UIN ßniiüiDu

The following list summarizes the steps for compiling and running FORTRAN

programs on BRLESC.

1. Rave FORTRAN compiler tape on tape switch 15»

2. Have tape switch 7 set to a temporary tape.

3. If have card input, be sure manual read switch 36 is down.

11 T-C* T-M-, -,r^, 4-^-»i^. -1 V\TMI4* I -r^-v»/-! r^v»arvi AM +• O^~»£ä I Cö+ momiol T>DQ(^ Cn.T"T 4~ f»V» nn HT\

and set tape switch 6 to input tape unit.

C T^1 . <AM4- «I 1 4- t-t-r-i./-, /Mi4-mi+- r>ö+- -ma rtiio T VQQ^ C*T.T-I -4- /"»VI **M ITT* ovi/^ oo+" -fa-no
J . J.J. Wctll Li Cl-I L OCX UC WU.OJJU.O) Otu iliCi,iiU.O. J_ J. •— «,<-(. u ¥V J. u\/ii ^/\s "^-f uiiu i_>v- «-/ wu^/1-

switch 13 to output unit. Also put manual read switch 37 up if

this output tape should be rewound at the end of this problem.

6. If programmer specifies any other input or output tapes, mount

proper tapes and set proper tape switches. (The programmer may

also specify 13 as an output tape without manual read switch 38

being up.)

kl

f. Use tape start button to initiate compiling the program.

Halt s:

a. 073; program error, initiate only if problems are stacked.

b. Nto; end of problem, initiate only if problems are stacked.

c. All other halts or cycles; note PO and NI registers and do a jump to O58.

It should soon get to N^MD.

XXI. MAJOR DIFFERENCES BETWEEN FORAST AT© FORTRAN

The following list of some of the basic differences between these two pro-

gramming languages should be useful to anyone who knows one language and is inter-

ling the other one.

1. Statement numbers in FORTRAN must be integer numbers that are used

as symbolic names whereas the location field in FORAST may contain

any symbolic name and a decimal integer is used as an absolute

address.

2. The initial character of a variable name must be alphabetic in

FORTRAN and indicates the type of variable. In FORAST, the initial

character may be a decimal digit and has no special significance.

3. The type of names used in FORTRAN arithmetic expressions determine

the type of arithmetic performed. In FORAST, the type of arithmetic

performed is floating point unless changed by a MODE card or by pre-

ceding the formula by "FIX" or "INT".

h. The type of a constant is determined in FORTRAN by the presence or

absence of a decimal point. In FORAST, constants assume the same

t.vnp a fi t.hp tvnp nf +".VIP Rtat.pmpnt +.Y>e*-v a-rp urntton in

5. In FORTRAN arithmetic formulas, automatic conversion from one type

of variable to another is proveded when the type of the variable on

the left of the = symbol is different from the type of the variables

used on the right of the = symbol. In FORAST, this conversion must

be accomplished by the explicit use of the appropriate subroutine

when it is desired.

6, FORAST allows the use of many = symbols to indicate more than one

result address in an arithmetic formula while FORTRAN allows only

one variable name for a result address.

42

7. Constant subscripts are enclosed in parentheses in FORTRAN but not

in FORAST,

8. All subscripts have an initial value of one in FORTRAN. In FORAST,

the initial value may be spe

for each array individually.

V±X»~ -1-14-1. UXUX V <X_l_l-<.v* J.1H-J. j kJU u^jv^vxi J.^u UM o^^ v wx uxxjr J^VOXOXV^ O.lH/CR^-1

y. vaiiauj-t; DUUDLI ipuo ai c axu.uwcu xii r uiuiuui ULXU HL; U in x yi\Aöi • j? v-/x\i-ix3x

accomplishes the same thing more efficiently by allowing any address

to be indexed by a single index register.

10. Three dimensional arrays are allowed in FORTRAN but not in FORAST.

11. FORTRAN allows a multiply and an add or subtract in a subscript

expression while FORAST allows only the addition or subtraction of a

constant in an indexing expression,

12. FORTRAN allows only one statement per card and FORAST allows more

than one. The statement field is columns 7-7? for FORTRAN and columns

11-76 for FORAST.

in FORTRAN but not in FORAST.

nil T•-~1 •! 0/^ •il+i'r,H/io4-i• -ir. ollAT.rai1 -i »-> T7TVI3 A. 5T1 V,i,4- v-i^4- -in •PA'DOTD /! HT X,*T. I.MlpJ—LCU mux o J.pj.j.i-a oxuu xo aj-xuncu x±i r UIUUJJ. UUU UUI^ ill JL vxvxiixxn

(although it does work in some FORTRAN compilers.)

ic: im,A -m/^-orrTDAT\T TTTI „X~X~«~«X -; ^ -..-^---.r ~~~x-v,-? rtx ,^,3 «^v-«,^„-^rt^ x^ xv>« •cir»T)Ac?rn -mi _L^J. xiit^ rwiAxnrtJ.li J-T uoauciuciiL/ xo vci) x co ux xu ocu uwuijjeix cu uu oiitr x* WiArtjJx J_r

statement.

ID.

FORAST.

HRLESC FORTRAN

1. The first card should be an identification card with an asterisk in

Column 1. Columns 2=20 should contain a valid BRLESC problem number.

2. If the signs used in the program are reversed to BRL usage, insert a

m? -

at BRL.)

?Tr^XJAT\Tmr J_ ATlTH _ " /-»/-*>-»+--^»,^1 r*a -V*A a-f*+- ^-r> -f-Vio i"rl£iri-f--T-f,-i no + n An /-*Q-r*ri f -\r T

j. j_x xnpuo ua.ua xt> nnjiaatu wx on A IJIJ.HU;D üI^I&; nit>ci o a, ^.HXJXJ »acjxr'.uj.L^ c j

statement where it will be executed before the data is read.

^3

h. Insert an extra card with an E in Column 1 between the r>rogram deck and

the in^ut data,

5. If the program uses sense switches, it is best to insert control cards

to preset them. (* SETSSW i UP or DOWN)

6. If tapes are used, make sure the tape unit numbers used are compatible

with BRLESC. (Those over 9 may need to be changed.)

7. Make sure arithmetic statement function names end with F.

8. Make sure that array names of four or more characters do not end with F.

9. Make sure that a nonsubscripted array name has not been used to represent

only the first element of the array.

10. Make sure that FORMAT statements do not contain any + signs.

11. Check for proper printer format control characters at the beginning of

tape output lines. (A blank character specified puts a 1 single space character

on tape.)

12. If desired, change tape output to card output or vice versa by inserting

control cards.

13. The program needs to be modified if it contains any of the following:

(l) DRUM statements (2) I cards (complex arithmetic), (3) assembly instructions

for some other computer or, (4) more memory or tape units than available on BRLESC.

1^. Names of variables must not be longer than six characters.

15« If possible, ask the original programmer if they assumed any special

characteristics of a particular computer or FORTRAN compiler when writing the pro-

gram. For example, on some computers, the variable in a DO statement is not always

actually used but it is always used on BRLESC.

l6. If possible, run a test case that has been run on another computer.

hk

XXIII. SUMMARY OF FORTRAN STATEMENTS

Notations:

s, si, s2,

-! T -JO

m.ml.m2...

ae

b,c,d,e,f

t

f

v,vl,v2

are statement numbers (look like integer numbers).

are integer variable names.

are integer variable names or integer constants.

represents an arithmetic expression.

represent any variable names or constants.

represents a tape unit number.

represents the statement number or variable name of a FORMAT

O UCL UClilCll O .

represent variable names.

Specification Statements:

General Form

DIMENSION v.vl.v2

Brief Description

Defines array names and maximum dimensions

of each.

EQUIVALENCE (v,vl,,.), (v2,vj,,,) Defines

COMMON v,vl,v2,

FREQUENCY s(m,ml,..),sl(m2,..)

Arithmetic Statements:

v = ae

asf(v,vlj = s =)= ae

Defines names common between subprograms.

Provides optimization information.

T ~~ ,-.-« Ä.3 "U,_ TTTiT nan

in v.

Arithmetic statement function where asf

Control Statements:

GO TO s

represents its name and v,vl,

dummy variables.

DO statement s next.

are the

GO TO i, (sl,s2) Do next the statement whose number was last

assigned to i by an ASSIGN statement.

""•V

General Form

GO TO (sl,s2, . . .),i

DO s i = mi,m2,m3

DO s i = ml,m2

IF(ae)sl,s2, s3

CONTINUE

STOP or STOP w

PAUSE or PAUSE w

CALL name (v.vl,v2,...)

IF(SENSE SWITCH r)sl,s2

SENSE LIGHT r

IP(SENSE LIGHT r)sl,s2

IF ACCUMULATOR OVERFLOW si, s2

IF QUOTIENT OVERFLOW si,s2

IF DIVIDE CHECK si,s2

Subprogram Statements:

SUBROUTINE name (v, vl, v2,...)

FUNCTION name (v,vl,v2,...)

RETURN

END

Brief Description

Do statement si next.

Repeat statements to and including s with

i = ml,ml + m3, ml + 2m3,... until i > m2.

Same as above with m3 = 1.

Do statement si next if ae is negative;

s2 next if ae is zero and s3 next if ae is

positive=

Dummy statement.

End of execution of main program. (w is

octal no.)

Computer halts. (Displays octal no. w.)

Perform the subroutine specified by "name".

Do statement si next if switch r is down,

do s2 next if it is up.

For r = 0 turn all sense lights off. For

r = 1,2,3, or k, turn light r on.

Do statement si or s2 next if sense light

r is on or off respectively.

These are special statements to check

certain overflow indicators. Statement si

or s2 is done next if indicator is on or

off respectively.

Defines the name and beginning of a sub-

routine.

v,vl,v2,... are the dummy variables.

Defines the name and beginning of a function

subprogram.

Indicates an execution exit of a subprogram.

Marks the end of a subprogram.

k6

General Form

Input-Output Statements:

FORMAT (Special Specifications)

READ f. list

PUNCH f, list

PRINT f, list

READ INPUT TAPE t,f, list

T/TDTfTTTP r\T IIULM TTT1 mA"DT? 4- -P T -t ~+-
niUlli UU1IU1 LfilL U; J- ; J-J. DO

READ TAPE t, list

WRITE TAPE t, list

END FILE t

•RarrfTRPirTR +.

REWIND t

READ DRUM m,ml,list

T.TDXmd TlTDTlW • •T 1 A r-t-

Brief Description

Describes the fields for input-output data.

Read cards.

Punch cards.

Print data, (on-line on some computers,

off line on BRLESC).

Read alphanumeric tape.

T.T-~-!J-~ «T _T~.. „,,_„„,• „ 4-». nixoc axpuauuiiicx 11; oaije.

Read binary tape.

Write binary tape.

Write end-of-file mark on tape.

Move ta^e back one record.

Rewind tape.

Read drum. (illegal on BRLESC.)

ACKNOWLEDGMENTS

Mr. Alfred Anderson reviewed the text and programmed the subroutine that

reads and prints decimal numbers in the object programs. Mr. Michael Romanelli

1 T C!A T» OV1 fiTJOi r\ -t-Vio +OYf

._y<i i, i i '.

LLOYD W. CAMPBELL
—^

39-

;/.
GLENN BECK

1+7

REFERENCES

 „i,„n T n*,A n««v OCUÜpUCÜ^ U. O.HU. UCURj _r.

Scientific Goiffnu.ter 'BRLESC' Ballistic Research Laboratories Memorandum
Report No. 1579, November 1961.

2. Campbell, L. and Beck, G. The FORAST Programming Language for ORDVAC and
BRLESC, Ballistic Research Laboratories Report No. 1172, August I962.

3. IBM Reference Manual, 709/7090 FORTRAN Programming System (Form C28-6u5*4-2),

k, IBM General Information Manual. FORTRAN (Form F28-8074-1), I96I,

5. IBM General Information Manual, Programmer's Primer for FORTRAN Automatic
Coding System for the IBM JOk Data Processing System (Form F28-6019), 1957.

o. IüM «ererence Manuax, ü'UKTK&N iurcoma-cic uoaing system ror tne ±bM (VI Data

7. IBM Reference Manual. 709/7090 FORTRAN Operations (Form C28-6o66-3). 196l.

48

APPENDIX A

T.TQm HI? "PRTr.Tl'E'CTlVrRm TTTTWPTnTJC! TTOR 70Q/7nQn ÄlSm 'RRT/E'.QP UXUi. **/X j. XLL-l A-/J-U. ^-J.1 III' A. U4IWXXW1IL' x. v^ii | *jy i | *s y*i cuixi • l " •

(F indicates fl.pt. and I indicates integer)

•MAiunr A DAT TMTTTVnTI

ABSF F F 1

XABSF I I 1

TTVTTTtf F F 1

XINTF F I i

MODF F F 2

XMODF I I 2

MAXOF I F > 2

MAX1F F F > 2

XMAXOF I I > 2

VM/IYTP
X'

T 2

MINOF I F > 2

MINIF F F > 2

XMINOF I I > 2

XMIN1F F I > 2

FLOATF I F 1

XFIXF F I 1

LJJ.VJT1U.'
2

XSIG-NF I I 2

DIMF F F 2

XDIMF I I 2

XLOCF F or I I -i

SQPTF F F 1

SINF F F 1

•m r -c 1

LOGF F F 1

EXPF F F 1

F F 1

TANHF F F i

Absolute value.

Absolute value.

Convert fl.pt. no. to integer.

Arg.l(mod Arg.2).

Arff-lfmod Are.2). — (_,- — N — 0- — 7-

Chooses largest argument.

Chooses largest argument.

Chooses largest argument.

f'Vinneoa T a>»rr£i e+- a rmiman+

Chooses smallest argument.

Chooses smallest argument.

Chooses smallest argument.

Chooses smallest argument.

Convert integer to fl. pt.

Convert fl.pt. to integer.

TK'onefDV en cm r\-f* AT*<T O +I~I Arrr 1

Transfer sign of Arg.2 to Arg.l.

Arg.l - minimum (Arg.l, Arg.2).

Are-.l - minimum (Ars.1. Ars.2). ^ t_> - — \ l^J - — s u- — / -

nj _i_ T_ _ _ j j] c> j_ i_ _ A

Square root.

Sine (argument in radians)

UUO±nc ^ dJi guju^ii ^ J-ii lau-ianoy

Natural logarithm.

Exponential.

Amt.anffent. (result, in radians)

Hyperbolic tangent.

TTOT' 'RRT.'RIRn nnlv

AKUbllW f Jf

ARCCOSF F F

ARCTANF F F

1

1

üjcsine.

Arcosine.

Arctangent (same as ATANF).

h9

APPENDIX B. THREE EXAMPLES OF FORTRAN PROGRAMS

» EXAMPLE 1 MULTIPLY TWO VECTORS A»B L.W. CAMPBELL

DIMENSION A<10),B(10),C(10)

READ 2.A.B

DO 3 1=1,10

3 Ci i j=Ai i j»Bi i i

Diiurw Ä.r

STOP

4 FORMAT!14HVFCT0R PRODUCT/I5E14.7))

END

END (THIS CARD REQUIRED ONLY ON BRLESC»)

14.1

36.2

L. . 5 1

2.7

0.35 22.8 91.7 374.18

3.44 83.61 2.648 9.8

U 1 t ' u.a 7 77
1*11

QQ 1

3.0 8.1118 19.1 42.44

OCT.25,63 BRLESC FORTRAN 2

* EXAMPLE 1 MULTIPLY TWO VECTORS A»B L.W. CAMPBELL

«Ff mo DonnnfT
» «_ W I W I X • I A «J- V-* W V- I

0.5936100E 02 0.4966805E 03 0.3625200E 03 0.7125090E 03 0.3296526E 05

0.9774000E 02 0.5803200E 03 0.6782276E 03 0.5057680E 02 0.4159120F 03

51

tXAMKLU £. MIMU bl"IALLt5l IMUWBtK IN AKKAT I" t L.LAMPÖCLL

DIMENSION F{20)

READ 2,F

SMALL = F(1)

DO 9 J=2,20

IF(SMALL-FIJ))9•9•8

8 SMALL=F(J)

9 CONTINUE

Dl IMC U 1 C M A I i
r KJ » » u ' ' V f -J I ' M u u

STOP

3 FORMATUIHSMALLEST F=F13.6)

END

Fhin

14.1 60.35 22.8

36.2 193.44 83.61

t • I. 1 i c r\
i J . "»

2.7 3.0 8.1118

91.7 374.18

2.648 9.8

-f 77
r » i f

Q Q 1
IIU« i

19.1 42.44

OCT.25»63 RRLESC FORTRAN 2

* EXAMPLE 2 FIND SMALLEST NUMBER IN ARRAY F, L.CAMPBELL

52

11
21
31

44

I

15

EXAMPLE
USE BISE
F0RMAT15
FORMAT«I
F0RMAT12
X=l.
Xi = 2.
EPS=.000
ASSIGN 1
PUNCH 11
F=X»(X»X
PUNCH21v
GOTOK.d
FO=F
IF(F)2,i
XP=X

22 FROM BRL REPORT 1209 CODED IN FORTRAN-L.CAMPBELL
CTION METHOD TO FIND ROOT OF F(X) = X««3-X-1 IN INTERVAL (1,2)
X,1HX10X4HF{X)//)
P2E15.7)
4HC0N0ITI0NS NOT SATISFIEO)

01
TO K

-l.)-l.
X,F
,4,7)

5,15

XN=X
X = Xl
ASSI
GOTO

GN 4
44

TO K

45

5
A

65
67
66

7
71
72

IF(F
XP=X
GOTO
XN=X
ASS!
IF(F
PUNC
STOP
V I \/ ft
/V= t AI'

GOTO
IF(A
IFIF
XP = X

)5,45,45

GN 7
0»F1
H 31

TO K
)66,65,65

44
BSFJ
)8,7

F)-EPS)67,71,71
2,72

tNU

8 XN=X
GOTO
END

66

OCT.25,63 BRLESC FORTRAN 2
* EXAMPLE 22 FROM BRL REPORT 1209 CODED IN FORTRAN-L.CAMPBELL

X F(X)

1. .OOOOOOOE 00 -1. .OOOOOOOE 00
2. .OOOOOOOE 00 5.OOOOOOOE 00
• t^rtrtnnnnc An a iK.r\i\r\i\r\c. _r> i

1. .2500OO0E 00 -2, ,9687500E- -01
1. •3750000E 00 2. .2460938E- -01
1. .3125000E 00 -5.1513672E- -02
1. .3437500E 00 8. .26U084E- -02
i . .i7fli;inf nn i . &«?Ram)F. .n?

1. .3203125E 00 -I. .8710613E- -02
1. .3242187E 00 -2. . 1279454E- -03
1. .3261719E 00 6. .2088296E- -03
1.3251953E 00 2. .0366507E- -03
l . . ^747t"!7nF nn -u. .ASQiftft^F- -ns
1. .3249512E 00 9. .9479097E- -04
1. .3248291E 00 4. .7403882E- -04
1.3247681E 00 2. .1370716E- -04
1. .3247375E 00 8. .3552438E- -05
1, ,3247223E 00 1, ,8477852E- -05
1. 3247147E 00 -I. .4058747E- •05

53

DlSTKlüUTlON LIST

No. of
CöpISS

No. of
Copies Organization

20 Commander
Defense Documentation Center
ATTN: TIPCR
Cameron Station
Alexandria, Virginia 22J1H

Director
Advanced Research Projects
Agency

Department of Defense
Washington, D. C. 20301

. i r> _ _ Director, rjaxionaj. oecuri oy
Agency

ATTN: R/D JO, Chief Engineering
Research Division

Fort George G. Meade, Maryland
20755

Commanding General
U.S. Army Materiel Command
ATTN: AMCRD-RP-B
Washington, D. C. 20315

Commanding Officer
Frankford Arsenal
Philadelphia, Pennsylvania 19157

Commanding Officer
Picatinnv Arsenal
ATTN: Feltman Research and

Engineering Laboratories
Dover, New Jersey 07801

Commanding General
U.S. Army Missile Command

Alab»•« 35809

Commanding Officer
Watertown Arsenal
Watertown, Massachusetts 02172

Commanding General
T T fl A -«•-, r \Ki*v*A 4- A rtM r
U . O . rtX'JIl^ NUIJI OlUllC

Tvrw^-r Ne>w .Tprspv 07801 •^ 7 **w " w -— — *- — j — !

Commanding General
U.S. Army Tank - Automotive Center
Land Locomotion Research Laboratory
Warren, Michigan U809O

Commanding General
Army Weapons Command
Rock Island, Illinois 61200

Commanding General
White Sands Missile Range
New Mexico 88002

Maior Item SUüüTV Manaepment Aeencv
Letterkenny Army Depot
Chambersburg, Pennsylvania 17201

Commanding General
U.S. Army Chemical Corps Research &

Development Command
T.T„ „v.-: *-.•+^-^ OK n n

Commanding General
U.S. Army Chemical Research &

Development
ATTN: Dr. Carl M. Herget
Edgewood Arsenal, Maryland 210^-0

Commanding Officer
U.S. Army CBR Combat Developments
Agency

ATTN: David T. Shepard, Director
Data Processing Center

Edgewood Arsenal, Maryland 2iOUu

Commanding General
U.S. Army Chemical Center Corps
Engineering Command

Edgewood Arsenal, Maryland 210i+0

Director
U.S. Army Nuclear Defense Laboratory
Edgewood Arsenal, Maryland 210^-0

55

DISTRIBUTION T.TST

No. of
Cop i e s Organization

No. of
Copies Organization

commanding crricer
operations ncsearcn uroup

Director
U.S. Army Chemical Corps

equality Assurance Technical
J;t?cncy

Edgevood Arsenal, Maryland
01 nlin r-.L w ru

Chairman
U.S. Army Chemical Corps

Technical Committee
Edgewood Arsenal, Maryland

21040

Commanding General
U.S. Army Chemical Cor^s

Proving Ground
Dugway Proving Ground
Dugway, Utah 84022

Director
T T n A T~».;_n .; i u. o. H.rm,y Diuiu^iccii

Tahnra+nyiDC

Fort Detrick, Maryland 21701

Commanding General
U.S. Army Research & Development

Laboratories
Fort Belvoir, Virginia 22060

Commanding Officer
U.S. Army Corps of Engineers
Army Reactors Group
Germantown, Maryland

r\-c*.o i uuiiimaiiumg uuicer
IT Q C* r\ "V m c* /-\-p T?>-i/-f-i

11CCL O

Waterways Experiment Station
P.O. Box 631
Vicksburg, Mississippi

U.S. Army Corps of Engineers
Special Assistant for Nuclear Power
D., A 1 A A ^ „ rp V

Wa Qh-i no-hnn PS . Tl f!

Director
U.S. Army Corps of Engineers
Cold Regions Research and Engineering
Laboratory

_L^xp wa.siij.iigL.un Avenue

Wilmette, Illinois

Commanding Officer
U.S. Army Corps of Engineers
Army Reactors Group
Fort Belvoir, Virginia 22060

Director
U.S. Army Medical Research and

Nutrition Laboratory
Denver, Colorado

Director
U.S. Army Corps of Engineers
Geodessy Intelligence and
Mapping Research & Development
Agency

Fort Belvoir, Virginia 22060

Commanding Officer
U-S, Army Corps of Engineers
Polar Research & Development

Center
Fort Belvoir, Virginia 22060

UUIUJUCUILLX:-^ yiiitci

U.S. A.rrpy Medical Research and
Development Command

VJashington 25, D. C.

Commanding Officer
U.S.Army Medical Unit
Fort Detrick, Maryland

Commanding?' Officer
U.S. Army Medical Research Laboratory
Fort Knox, Kentucky ^0120

%

DISTRIBUTION LIST

MO. OI

Copies Organization
no. or
Copies Organization

Commanding Officer
U.S. Army Signal Engineering
Agency

Arlington Hall Station
Arlington, Virginia

vOuifiianu.ing Genex'al

U.S. Army Electronics Research and
Development Laboratory

ATTN: Data Equipment Branch
Fort Monmouth, New Jersey 07703

Commanding General
U.S. Army Signal Missile
Support Agency

White Sands Missile Range
New Mexico 88002

Commanding Officer
U.S. Army Signal Intelligence
Agency

Arlington Hall Station
Arlington, Virginia

Commanding Officer
U.S. Army Signal Electronic
Research Unit

P.O. Box 205
Mountain View, California

OV-»lllijic*liU.J.ilg Ul J- XUCi

U.S. Army Signal Avionics
Field Office

P.O. Box 209
St. Louis 66, Missouri

Chief Signal Officer
Lv^jjaa. UJUGIIU ui one J-U. my
Wa.shino-t.nn PR n, n.

Commandant
U.S. Army Signal Corps School
ATTN: Officer Department
Fort Monmouth, New Jersey 07703

Commanding General
U.S. Arrov Electronic Proving
Ground

Fort Huachuca, Arizona 85613

Commanding General
U.S. Army Electronics Command

Fort Monmouth New Jersey 07703

Director
U.S. Army Quartermaster Research and
Engineering Field

Evaluation Agency
rux-u lAse, Virginia d.^o<j±

Commanding Officer
U.S. Army Transportation Materiel
Command

12th and Spruce Streets
St. Louis, Missouri

r* nm»< nr,A A ~ ~ n « ~ ~ — ~ l ^uiiimaiiu.xiig, uciicx O.J.

U.S. Army Transportation Research
Command

Fort Eustis, Virginia 23604

Commanding General
U.S. Continental Army Command
Fort Monroe, Virginia 23351

Commanding General
U.S. Army Combat Developments Command
ATTN: CDCRE-C
Fort Belvoir, Virginia 22060

uommanaing general
nCAnnn n^^'us^^A A„.— n

Fort Leavenworth, Kansas 66027

Commanding General
U.S. Army Combat Developments Command
ATTN: CCISG
Fort Belvoir, Virginia 22060

C7

DISTRIBUTION LIST

No. of
Copies Organization

No. of
Copies Organization

Commandant
U.S. Army Artillery & Guided

hA4 i~> t~> A. ~\ £± O /-»Vi (—\r~\~)

Fort Sill, Oklahoma 73503

Commandant
U.S. Army Guided Missile

School
Redstone Arsenal, Alabama 35Ö09

ni ju j II^I^^WJ. ^" ^yj. j. j_ w w

JOUS Columbia Pike
Arlington, Virginia

Commanding Officer
Army Research Officer (Durham)
ßüx Ufl, uuüe otatiun
Durham, North Carolina 27706

Commandant
Command & General Staff College
ATTN: Computing Facility
Fort Leavenworth, Kansas 66027

Conuäanu.xng ucneraj.

ATTN: Computing Facility
Maryland 20755

Commanding Officer
U.S. Army Communications Agency
The Pentagon
T,.I„„v,-; ^rr+ ^« 01; "n p

1 Commanding Officer
U.S. Naval Ordnance Laboratory

Commander
U.S. Naval Ordnance Test Station
China Lake, California 93557

Library
TT O TVT "1 T^ L « J , , „ 4-^ O^U^rtT

Monterev. California

Director
U.S. Naval Research Laboratory
ATTN: Code 1+92
Washington, D. C. 20390

Commander
U.S. Naval Weapons Laboratory
ATTN: Computation & Analysis Branch
Dahlgren, Virginia 22448

Chief, Bureau of Ships
ATTN: Computing Facility
nQnavi + mQn+ r^t-P 4-Vio TvToTnr J_y*~ pCAJ. ^111^11 u wx \ji.L\^ im. v j

Washington, D. C. 20360

Chief, Bureau of Yards & Docks
ATTN: Data Processing and Analysis

Branch
Department of the Navy
wabiuugbuii, u. u. C\JJ\J\J

Professor of Ordnance
U.S. Military Academy
West Point, New York 1099-o

Chief of Naval Operations
Department of the Navy
Washington, D. C. 20360

3 Chief, Bureau of Naval Weapons
A I I II I I1\T T\T T ~Z.

Department of the Navy
Washington, D. C. 20360

1 Commander
U.S. Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland

Commanding Officer
U.S. Naval Air DeveioiJinent Center
Johnsville, Pennsylvania

Commanding Officer
U.S. Naval Air Test Center
ATTN: Armament Test
U.S. Naval Air Station
Patuxent River, Maryland

58

DISTRIBUTION LIST

HU. Ui

Copies Organization Copies Organization

Commander
U.S. Naval Missile Center
ATTN: Simulation Branch

Systems Department
Range Operations

i/cpai uiuciiu ouuc Xw

Point Mu^u California 93041

Commander
Naval Engineering Experiment

Station
ATTN: Applied Math Office

Code 502
X-LHII«>L/U-I- J- o ,

1 Commanding Officer and Director
David W. Taylor Model Basin
ATTN: Technical Library

Code OkS.
Washington, D. C. 2000?"

1 Commanding Officer & Director
U.S. Naval Radiological Defense

Laboratory
San Francisco 2k, California

1 Director
T T n TM— 1 u.o. rjäVä.j- DUperyonic .Laoora~Gory
1'1<-^1_J UL4^11UUI„ u uo _L i - . > o -I- o m. LI\— V-.'.L

Technology
ATTN: Computer Facility
560 Memorial Drive
Cambridge, Massachusetts

Superintendent
U.S. Naval Academy
ATTN: Weapons Department
Annapolis, Maryland

UUilüHtAllVi.-LJlg, Ul X 1LCI

Fleet Operations Control Center
US Pacific Fleet
ATTN: F. N. Quinn
Navy No. 509
Fleet Post Office
San Francisco, California

US Marine Corps
Code AX
Washington, 25, D. C.

1 Director
Marine Corps Landing Force Development

Marine Corps Schools
Quantico, Virginia 22134

1 AEDC
Arnold Air Force Station
Tennessee 37389

1 AFFTC (FTFSE)
Edwards Air Force Base
Califormia 93523

1 AFMTC
Patrick Air Force Base
Florida

1 AFMDC
Holloman Air Force Base
New Mexico 88330

1 AFCRL
L. G. Hanscom Field
Bedford, Massachusetts 01731

1 TAC (DCRS)
Langley Air Force Base
Virginia 23365

59

DlbTKlBUTlON LIST

Copies Organization

1 AUL (5T-AUL-60-118)
Maxwell Air Force Base
Alabama 36112

/ ,
AFIT (NCLi;
Wright-Patterson Air Force

uaöt

Ohio U5U33

ASD (ASNCD)
Wrieht-Patterson Air Force

Base
Ohio ^33

AFWL
TV--; ._j_ -i « „, ,3 A -: ~, TP ^v*m^ "D ^ ^ Q J\xr UXU.I1U- flir r Ul uc LiooC

New Mexico

Headquarters, USAF (AFAAC)
Washington, D. C. 20330

Headquarters, USAF (AFADA)
Washington, D. C. 20330

Headquarters, USAF (AFNIN3)
Washington, D. C. 20330

USAFA
United States Air Force Academy
Colorado 808UO

Po" + ^al Tnt.pl 1 i^pnnp Asencv

OCR/Library/lLS
ATTN: Code 163
Washington, D. C. 20505

Director
Air Weather Service Climatic

225 D Street, S.E.
Washington 25, D. C.

Copies Organization

1 Federal Aviation Agency
National Aviation Facilities
Experimental Station

ATTN: Simulation & Computation
Branch

Atlantic City, New Jersey

1 Federal Aviation Agency
ATTN: Data Processing Branch-

Aircraft Management Division
Bureau of Flight Standards

P.O. Box 1082
Oklahoma City, Oklahoma

National Aeronautics and Space
Administration

ATTN: Mr. R.E. Liettell
1520 H Street, N.W
Washington, D. C. 20>U6

1 Director
National Aeronautics and Space

Administration
Flight Research Center
ATTN: Computer Facility
Box 273
Edwards, California

0 Director
National Aeronautics and Space
Administration
Göddärd Space Flight Center
ATTN: Tracking & Data Systems

I. Mortimer Datz-
Computer Operations Branch
Data Systems Division

Anacostia Naval Station
Washington 25, D. C.

DISTRIBUTION LIST

Copies Copies Organization

Director
National Aeronautics and Space
Administration

Lewis Research Center
ATTN: Computer Faciltiy
ux^ VUJ.UHU nil ^JUX t-*

Cleveland, Ohio

Director
National Bureau of Standards
ATTN: Mr. Paul Neissner

Components & Techniques
Section-Data
Processing' Systems
Division

Dr. S. N. Alexander
Computation Laboratory

232 Dynamomenter Building
Washington 25, D. C.

U. S. Department of Commerce
Bureau of Census
ATTN: Computer Facility
Federal Office Building No. 3
Suitland, Maryland

rial ifnrnia TnRt.itntp nf TPPVITAI ACTV --- _HHW W-H V« Vw w-L. iWX.HHVJ.U5j

Jet Propulsion Laboratory
ATTN: Computer Facility
1+800 Oak Grove Drive
Pasadena, California 91103

.ampex uompuxer i-roaucts uompany
9937 Jefferson Boulevard
Culver Citv. California

Datatrol Corporation
Consulting & Programming Services
ATTN: Mr. Cooper, Vice President
8ll3A Fenton Street
Oliver op.ri.iig war yj. ana

E. I. DuPont DeNemours Company
Engineering Department
ATTN: Theodore Baumeister, III
Wilmington 98, Delaware

Engineering Research Associates
Division of Remington Rand, Inc.
1902 W. Minnehaha Avenue
St. Paul. Minnesota

1 Brookhaven National Laboratory
oOffipUuci räCIii uy

TT"ri+nn T\TP»\.T V<~i-t~V

Oak Ridge National Laboratory
P. 0. Box P
Oak Ridge, Tennessee

Research Analysis Corporation
ATTN: Computer Facility
6935 Arlington Road
Bethesda, Maryland
Washington, D. C. 2001L

The Johns Hopkins University
Appnea ir'nysics laboratory
ArrirpTJ . P^m-i-M 1 +a v. T?G r* -i 1 -i 4--ir niiit . vwiiipuoti r ULlllL-J

8621 Georgia Avenue
Silver Spring, Maryland

General Mills
Electronics Group
1000 Ibth Street, N.
puu ooxcir ßuliQing
Washington 6, D. C.

W.

International Business Machine
Corporation

Engineering Laboratory
ATTN: Customer Executive

Education Department
UUll UUw^ i oa_uj_± u± ma

Raytheon Manufacturing Company
P. 0. Box 398
Bedford, Massachusetts

£1 ux

Copies Organization
No. of
Copies Organization

Remington Rand Univac
Division of Sperry Rand
Corporation

ATTN: Systems Analysis
ftl 1 a rrVi ünu

Q + Pmil

A^r£>rm£i

Mi nriPRota

Science Research Association
Incorporated

259 East Erie Street
ATTN: Mr. Don Shepherd

Project Director
Chicago 11, Illinois

Technitrol Engineering
Corporation

1952 E. Alleghany Avenue
Philadelphia JU, Pennsylvania

The George Washington University
ATTN: Logistics Research Project
7O7 22nd Street, N.W.
Washington 7, D. C.

Georgia Institute of Technology
Engineering Experiment Station
ATTN: Rich Electronic Computer

Center
Atlanta 13, Georgia

T 7 u. nlVcrSiuV
Computation Laboratory
Cambridge 38, Massachusetts

Indiana University
ATTN: Research Computing Center
Bloomington, Indiana

Technology
ATTN: Comptroller
Pasadena, California

Columbia University
Electronics Research

Laboratories
!.XO l,7^o+ IOr, r'l.^pt

New York 27, New York

Iowa State University of Science
nnr\ Tpphnnl nnv

Engineering Experiment Station
ATTN: Cyclone Computer Laboratory
Ames, Iowa

The Johns Hopkins University
ATTN: Computation Center
3-4-th and Charles Streets
Baltimore l8. Maryland

Columbia University
Lewis Cyclation Laboratory
ATTN: Computex' Facility
Box 137
-r : — r—\. ~~ ^.^ Un/1
H'VXIlgbUIl Uli IllX • UDUU .

Cornell University
ATTN: Coordinator of Research
Ithaca, New York

Dartmouth College
AT'iiN: uompu ua. u-Loii V/Ciiu<_-'.

U.minfVl i ,><->

Lehigh University
ATTN: Computer Facility
bethehem, Pennsylvania

rianiuc u be un-i-Ve± 51 by

ATTN: Computing Center
ISIS West Wisconsin Avenue
Milwaukee, Wisconsin

Michigan State University
College of Engineering

ATTN: Computer Laboratory
East Lansing, Michigan

02

DISTRIBUTION LIST

C nnips ("Vrcrnrn 7ä*tiGn

1 Missouri School of Mines
and Metallurgy

ATTN: Computer Facility
Rolla, Missouri

1 New York University

ATTN: Computation &
Statistical Laboratory

University Heights
New York 53, New York

1 Oklahoma State University
The Computing Center
ATTN: Department of

Mathematics
Stillwater, Oklahoma

1 Oregon State College
Department of Mathematics
ATTN: W. E. Milne
Corvallis, Oregon

University of California
9^-2 Hilldale Avenue
Berkeley, California

University of Delaware
Newark, Delaware

.c Ti n . University o± ±xj.inois
Department of Mathematik
Urbana, Illinois

University of Pennsylvania
The Moore School of Electrical
Engineering

ATTN: Mr. Ingerman
Philadelphia h, Pennsylvania

Professor Bruce Charters
Computing Laboratory
Brown University
Providence, Rhode Island

Polytechnic Institute of
Brooklyn

ATTN: Mr. Warren Boes
333 Jay Street
Brooklyn 1, New York

Princeton University
Mathematics Department
Princeton, New Jersey

Stanford University
ouiupuuä uiun uenxer

University of Alberta
Department of Mathematics
ATTN: Professor John McNamee
Edmonton, Alberta, Canada

Watson Scientific Computing
Laboratory

612 W. Il6th Street
New York 27, New York

1 Mary Broadhead

J-J- ^J ,

Australian Group
c/o Military Attache
Australian Embassy
2001 Connecticut Avenue, N.
Washington, D. C. 20008

W.

63

JJibTKiÜUTiÜlM LibT

Copies Organization

The Scientific Information Officer
Defence Research Staff
British Embassy
3100 Massachusetts Avenue, N.W.
Washington, D. C. 20008

Defence Research Member
Canadian Joint Staff
PÜ-50 Massachusetts Avenue.
Washington, D. C. 20008

N.W.

Aberdeen Proving Ground

Chief. TIB

Air Force Liaison Office
Marine Corps Liaison Office
Navy Liaison Office
CDC Liaison Office

D & PS Branch Library

6k

AS Accession No.
Ballistic Research laboratories, APG
HRLESC FORTRAN
Lloyd W. Campbell and. Glenn Beck

BKL Report Bo. 1229 November 1963

ROT & E Project No. IMOIO5OIAOO3
UWCLASSIFIED Report

UNCLASSIFIED

Mathematical computers
coding

Mathematical computers
operation

FORTRAN is a popular programming language that has been implemented on many
computers. It is now available on Ballistic Research Laboratories* BRLESC com-
puter. This report describes the FORTRAN language in general, and includes specific
details about its implementation on BRLESC.

AD Accession Ho.
Ballistic Research Laboratories, APGr
BRLESC FORTRAN
Lloyd W. Campbell and Glenn Beck

BRL Report No. 1229 November 1963

RUT & E Project Ho. 1MO10501AO03
UNCLASiSIFIED Report

UNCLASSIFIED

Mathematical computers
coding

Mathematical computers
operation

FORTRAN is a popular programming language that has been Implemented on many
computers. It is now aivailable on Ballistic Research Laboratories' BRLESC com-
puter. Tills report describes the FORTRAN language in general and Includes specific
details about its implementation on BRLESC.

Accession No. UNCLASSIFIED

Mathematical computers -
coding

Mathematical computers -
operation

AD_ _
Ballistic Research Laboratories, APG
BRLESC FORTRAN
Lloyd W. Campbell and Glenn Beck

BRL Report Mo. 1229 November 1963

ROT & E Project No. IMOIO5OIAOO3
UWCLASSIFIBD Report

FORTRAN is a popular programming language that has been implemented on many
computers. It is now availeible on Ballistic Research Laboratories' BRLESC com-
puter. This report describes the FORTRAN language in general, and includes specific
details about its implementation on BRLESC

AD Accession No. UNCLASSIFIED

Mathematical computers
coding

Mathematical computers
operation

Ballistic Research Laboratories, APG
BRLESC FORTRAN
Lloyd W. Campbell and Glenn Beck

BRL Report No. 1229 November 1963

ROT fc E Project Mo. IMOIO5OIAOO3
UNCLAS!3IFIED Report

FORTRAN is a popular programming language that has been Implemented on many
computers. It is now available on Ballistic Research Laboratories' BRLESC com-
puter. This report describes the FORTRAN language in general and includes specific
details about its implementation on BRLESC.

AI) Accession No. UNCLASSIFIED

Mathematical computerE -
coding

Mathematical computers -
operation

Beillistic Research laboratories, APG
BRLESC FORTRAN
Lloyd W. Campbell and Glenn Beck

BHL Report Bo. 1229 November 1963

ROT & E Project No. 1M01O501AO03
UNCLASSIFIED Report

FORTRAN is a popular programming language that has been implemented on many
computers. It is now available on Ballistic Research Laboratories' BBTiK.SC com-
puter. This report describes the FORTRAN language in general, and includes specific
details about Its implementation on BRLESC.

UNCLASSIFIED

Mathematical computers
coiling

Mathematicail compiuters
operation

AD Accession Mo.
Ballistic Research laboratories, APG
BRLESC FORTRAR
Lloyd W. Campbell and Glenn Beck

BRL Report No. 1229 November 1963

RDT & E Project Ho. lMO10501AtX»3
UNCLASSIFIED Report

FORTRAN is a. popular programming langviage that has been Implemented, on many
computers. It is now available on Ballistic Research Laboratories' BRLESC com-
puter. Tills report describes the FORTRAN language in general and includ.es specific
details about its Implementation on BRLESC.

AID Accession No.
Ballistic Research Laboratories, APG
BRLESC FORTRAN
Lloyd W. Campbell and Glenn Beck

BHL Report No. 1229 November 1963

R]DT & E Project No. 1M010501A003
UNCLASSIFIED Report

UNCLASSIFIED

Mathematical computers
coding

Mathematical computers
operation

AD Accession No. UNCLASSIFIED

Mathematical computers
coding

Mathematical computers
operation

FOFtTRAN is a popular programming language that ha.s been implemented on many
computers. It is now available on Ballistic Research Laboratories' BRLESC! com-
puter. This report describes the FORTRAN language in general and includes specific
details about its implementation on BRLESC.

Ballistic Research Laboratories, APG
BRLESC FORTRAN
Lloyd W. Campbell and Glenn Beck

BHL Report No. 1229 November 1963

ROT' & E Project No. 1M0105O1AOO3
UNCLASSIFIED Report

FORTRAN is a popular programming language that has been Implemented on many
computers. It is now available on Ballistic Research Laboratories' BRLESC com-
puter. Tills report describes the FORTRAN language in general and includes specific
details about its implementation on BRLESC. I

